Skip to main content
Log in

Effect of Atmospheric Pressure Plasma Treatment/Followed by Chitosan Grafting on Antifelting and Dyeability of Wool Fabric

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

Effect of chitosan on antifelting and dyability of dielectric barrier discharge (DBD) pretreated wool fabric were evaluated. We have used a DBD, working in an atmospheric pressure air for pretreatment of wool fabric. The chitosan was applied to pretreated wool fabrics by using pad-dry cure technique. The anti-felting properties of the wool samples were studied and it was shown that the shrink resistance and anti-felting behavior of the wool had been significantly improved by the DBD pretreatment followed by chitosan grafting. In addition, dye ability of wool fabrics after plasma/chitosan treatment is improved. Some analytical skills such as Fourier transform infrared spectroscopy and scanning electron microscope were used to characterize the different aspects of the treated fabric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arsheen Moiz, Naheed Kausar, Aleem Ahmed, Naheed Kausar, Kamran Ahmed, Munnaza Sohail, Study the effect of metal ion on wool fabric dyeing with tea as natural dye. J. Saudi Chem. Soc. 14, 69–76 (2010)

    Article  Google Scholar 

  2. S.C. Champion, A.P. Fearne, Alternative marketing systems for the apparel wool textile supply chain: filling the communication vacuum. Int. Food Agribus. Manag. Rev. 4(3), 237–256 (2001)

    Article  Google Scholar 

  3. Asl Demir, Buket Arik, Esen Ozdogan, Necdet Seventekin, The comparison of the effect of enzyme peroxide, plasma and chitosan processes on wool fabrics and evaluation for antimicrobial activity. Fibers Polym. 11(7), 989–995 (2010)

    Article  Google Scholar 

  4. S.M. Borghei, S. Shahidi, M. Ghoranneviss, Z. Abdolahi, Investigations into the anti-felting properties of sputtered wool using plasma treatment. Plasma Sci. Technol. 15(1), 37 (2013)

    Article  ADS  Google Scholar 

  5. Hengameh Honarkar, Mehdi Barikani, Applications of biopolymers I: chitosan. Monatsh. Chem. 140, 1403–1420 (2009)

    Article  Google Scholar 

  6. Kuo-Shien Huang, Wu Wei-Jang, Jeong-Bor Chen, Huey-Shan Lian, Application of low-molecular-weight chitosan in durable press finishing. Carbohydr. Polym. 73, 254–260 (2008)

    Article  Google Scholar 

  7. Xuting Xue, Ling Li, Jinxin He, The performances of carboxymethyl chitosan in wash-off reactive dyeing. Carbohydr. Polym. 75(2), 203–207 (2009)

    Article  Google Scholar 

  8. S. Vı′lchez, A.M. Manich, P. Jovancic, P. Erra, Chitosan contribution on wool treatments with enzyme. Carbohydr. Polym. 71, 515–523 (2008)

    Article  Google Scholar 

  9. Hiroshi Yako, Mie Minagawa, Akihiko Tanioka, Characterization of chitosan nanofiber fabric by electrospray deposition: electrokinetic and adsorption behavior Hidetoshi Matsumoto. J. Colloid Interface Sci. 310, 678–681 (2007)

    Article  Google Scholar 

  10. Zitao Zhang, Liang Chen, Jinmin Ji, Yanliu Huang, Donghui Chen, Antibacterial properties of cotton fabrics treated with chitosan. Text. Res. J. 73, 1103 (2003)

    Article  Google Scholar 

  11. Lidija Fras Zemljič, Simona Strnad, Olivera Šauperl, Karin Stana-Kleinschek, Characterization of amino groups for cotton fibers coated with chitosan. Text. Res. J. 79, 219 (2009)

    Article  Google Scholar 

  12. Chieh-Yu. Chao, Ching-Wen Lou, Ching-Wen Lin, Yueh-Sheng Chen, Chun-Hsu Yao, Zen-Shoung Lin, Jia-Horng Lin, Dressing properties evaluation of tencel/cotton nonwoven fabric coated with chitosan for wound. Text. Res. J. 78, 248 (2008)

    Article  Google Scholar 

  13. Yu. Dan, He Jinxin, Ma. Yuehui, Wang Wei, Mechanisms and kinetics of chelating reaction between chitosan and Pd(II) in chemical plating pretreatment. Text. Res. J. 81, 51 (2011)

    Article  Google Scholar 

  14. Necla Yaman, Esen ozdogan, Necdet Seventekin, Atmospheric plasma treatment of polypropylene fabric for improved dyeability with insoluble textile dyestuff. Fibers Polym. 12(1), 35–41 (2011)

    Article  Google Scholar 

  15. C.D. Papaspyrides, S. Pavlidou, S. Nvouyiouka, Development of advanced textile materials: natural fibre composites, anti-microbial, and flame-retardant fabrics proceedings of the institution of mechanical engineers, part L. J. Mater. Des. Appl. 223, 91 (2009)

    Google Scholar 

  16. Ching-Wen Lou, Jia-Horng Lin, Ko-Chung Yen, Lu Chao-Tsang, Chia-Yi Lee, Preparation of polyethylene oxide/chitosan fiber membranes by electro spinning and the evaluation of biocompatibility. Text. Res. J. 78(3), 254–257 (2008)

    Article  Google Scholar 

  17. Mohsen Miraftab, John Barnabas, John F. Kennedy, Rashid Masood, Antimicrobial properties of alginate-chitosan (Alchite) fibers developed for wound care applications. J. Ind. Text. 40, 345 (2011)

    Article  Google Scholar 

  18. YU-Chang Tyan, Jiunn-Der Liao, Y.I.-T.E. Wu U, Ruth Klauser, Anticoagulant activity of immobilized heparin on the polypropylene nonwoven fabric surface depending upon the ph of processing environment. J. Biomater. Appl. 17(2), 153–178 (2002)

    Article  Google Scholar 

  19. Yoon J. Hwangi, Marian G. Mccord, Jae S. An, Bok C. Kang, Shin W. Park, Effects of helium atmospheric pressure plasma treatment on low-stress mechanical properties of polypropylene nonwoven fabrics. Textile Res. J. 75(11), 771–778 (2005)

    Article  Google Scholar 

  20. Hortensia Ortega-Ortiz, Baltazar Gutiérrez-Rodríguez, Gregorio Cadenas-Pliego, Luis Ibarra Jimenez, Antibacterial activity of chitosan and the interpolyelectrolyte complexes of poly (acrylic acid)- chitosan. Braz. Arch. Biol. Technol. 53(3), 623–628 (2010)

    Article  Google Scholar 

  21. Deepti Gupta, Adane Haile, Multifunctional properties of cotton fabric treated with chitosan and carboxymethyl chitosan. Carbohydr. Polym. 69, 164–171 (2007)

    Article  Google Scholar 

  22. S. Shahidi, J. Wiener, M. Ghoranneviss, M. Štepánková, Influence of Dielectric Barrier Discharge treatment on Adhesion Properties of Platinum Coated Polypropylene Foil and Polypropylene Fabrics. Asian J. Chem. 23(2), 863–866 (2011)

    Google Scholar 

  23. M.J. Tsafacka, J. Levalois-Grützmacher, Towards multifunctional surfaces using the plasma-induced graft-polymerization (PIGP) process: flame and waterproof cotton textiles. Surf. Coat. Technol. 201, 5789–5795 (2007)

    Article  Google Scholar 

  24. C.W. Kan, C.W.M. Yuen, Effect of low temperature plasma treatment on wool fabric properties. Fibers Polym. 6(2), 169–173 (2005)

    Article  Google Scholar 

  25. AM Kutepov, AI Maksimov, A Yu Nikiforov, and VA Titov, Effect of the products of plasma-chemical transformations on the properties of a plasma and its dynamic behavior. Theor. Found. Chem. Eng. 37(4), 365–373 (2003)

    Google Scholar 

  26. N. De Geyter, R. Morent, C. Leys, L. Gengembre, E. Payen, S. Van Vlierberghe, E. Schacht, DBD treatment of polyethylene terephthalate: atmospheric versus medium pressure treatment. Surf. Coat. Tech. 202, 3000–3010 (2008)

    Article  Google Scholar 

  27. Kunwar Pal Singh, Subrata Roya, Impedance matching for an asymmetric dielectric barrier discharge plasma actuator. Appl. Phys. Lett. 91, 081504 (2007)

    Article  ADS  Google Scholar 

  28. Flint O. Thomas, Thomas C. Corke, Muhammad Iqbal, Alexey Kozlov, and David Schatzman, Optimization of dielectric barrier discharge plasma actuators for active aerodynamic flow control. AIAA J. 47(9), 2169–2178 (2009)

  29. Alessio Montarsolo, Espedito Vassallo, Raffaella Mossotti, Guiseppina Lopardo, Riccardo Innocenti, Giorgio Mazzuchetti, Fabio Rombaldoni, Characterization of plasma-coated wool fabrics. Text. Res. J. 79, 853 (2009)

    Article  Google Scholar 

  30. Weijun Ye, Man Fai Leung, John Xin, Tsz Leung Kwong, Daniel Kam Len Lee, Pei Li, Novel core-shell particles with poly(n-butyl acrylate) cores and chitosan shells as an antibacterial coating for textiles. Polymer 46, 10538–10543 (2005)

    Article  Google Scholar 

  31. S. Shahidi, A. Rashidi, M. Ghoranneviss, A. Anvari, Plasma effects on anti-felting properties of wool fabrics. J. Wiener Surf. Coat. Technol. 205, S349–S354 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Islamic Azad University, Arak Branch for providing grant of members.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheila Shahidi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shahidi, S., Ghoranneviss, M. & Dalal Sharifi, S. Effect of Atmospheric Pressure Plasma Treatment/Followed by Chitosan Grafting on Antifelting and Dyeability of Wool Fabric. J Fusion Energ 33, 177–183 (2014). https://doi.org/10.1007/s10894-013-9650-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-013-9650-9

Keywords

Navigation