Skip to main content
Log in

Alpha Emission Spectra of 27Al, 50,52Cr, 55Mn, 54,56Fe, 58,60Ni Nucleus for Neutron Induced Reaction

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

The design of novel nuclear facilities, fusion as well as fission reactors, requires the knowledge of all properties of relevant materials, including the nuclear differential cross sections for a careful selection. The nuclear cross sections data for gas production via particle (neutron, proton, alpha, etc.) induced reactions are great importance in the domain in the fusion reactor technology, particularly in the calculation of nuclear transmutation rates, nuclear heating and radiation damage due to gas formation. In fusion reactor structures, a serious damage mechanism has been gas production in the metallic resulting from diverse nuclear reactions, mainly through (n, p) and (n, α), (n, d), (n, t). In the present study, by using equilibrium reaction mechanisms, the (n, xα) reaction alpha emission spectra for 27Al, 50,52Cr, 55Mn, 54,56Fe, 58,60Ni isotopes were investigated from 9 to 15 MeV incident neutron energy. The equilibrium results have been calculated by using the hybrid model, the geometry dependent hybrid model. Calculation results have been also compared with the available measurements in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. E.E. Bloom, J. Nucl. Mater. 7, 258 (1998)

    Google Scholar 

  2. S. Şahin, M. Übeyli, Energy Conver. Manag. 45, 1497 (2004)

    Article  Google Scholar 

  3. E. Tel, J. Fusion Energ. 29, 332–336 (2010)

    Article  Google Scholar 

  4. E. Tel et al., J. Fusion Energ. 29, 290–294 (2010)

    Article  Google Scholar 

  5. H. Leeb et al., J. Korean Phys. Society 59(2), 1230–1235 (2011)

    Article  Google Scholar 

  6. R. Aymar et al., The ITER design. Plasma Phys. Control. Fusion 44, 519 (2002)

    Article  ADS  Google Scholar 

  7. B. Király et al., Nucl. Instrum. Method Phys. Res. B 266, 549–554 (2008)

    Article  ADS  Google Scholar 

  8. Mukherjee, Singh, J. Phys. G Nucl. Part. Phys. 22, 1455–1467 (1996)

    Article  ADS  Google Scholar 

  9. M. Ismail, Pramana 32(5), 605–618 (1989)

    Article  ADS  Google Scholar 

  10. E. Tel, Ann. Nucl. Energy 37, 1316–1320 (2010)

    Article  Google Scholar 

  11. J. Ernst, W. Friedland, H. Stockhorst, Z. Phys. A 333, 45 (1989)

    ADS  Google Scholar 

  12. E. Gadioli, E. Gadioli Erba, M. Luinetti, Z. Phys. A 321, 107 (1985)

    Article  ADS  Google Scholar 

  13. M. Ismail, Pramana J. Phys. 50, 173 (1998)

    Article  ADS  Google Scholar 

  14. R.D. Kieburtz, E.F. Neuzil, J. Inorg. Nucl. Chem. 34, 3303 (1972)

    Article  Google Scholar 

  15. P.P. Dmitriev, Energoatomizdat, INDC (CCP)-263/G + CN + SZ IAEA, Austria (1986)

  16. D. West, A.C. Sherwood, Ann. Nucl. Energy 9, 551–577 (1982)

    Article  Google Scholar 

  17. H. Matsunobu, N. Yamamuro, Nucl. Sci. Technol. 2, 188–191 (2002)

    Google Scholar 

  18. Heaton et al., Nucl. Instrum. Method A 276, 529–538 (1989)

    Article  ADS  Google Scholar 

  19. Daruga, Matusevich, Atom. Energy 33, 735 (1972)

    Google Scholar 

  20. S. Gerjacks, K. Ehrlich, in Proceedings of International Conference on Nuclear Data for Science and Technology, 13–17 May 1992, J€ulich, Germany, ed. by S.M. Qaim (Springer-Verlag, Berlin, 1992), p. 259

  21. M. Blann, H.K. Vonach, Global test of modified precompound decay models. Phys. Rev. C 28, 1475–1496 (1983)

    Article  ADS  Google Scholar 

  22. M. Blann, ALICE-91: Statistical Model Code System with Fission Competition, RSIC Code Package PSR-146

  23. V.M. Strutinsky, in Proceedings of International Congress Physics Nuclear Application (Paris, 1958) p. 617

  24. V.F. Weisskopf, D.H. Ewing, Phys. Rev. 30, 472 (1940)

    Article  ADS  Google Scholar 

  25. M. Blann, Hybrid model for pre-equilibrium decay in nuclear reactions. Phys. Rev. Lett. 27, 337 (1971)

    Article  ADS  Google Scholar 

  26. M. Blann, Influence of nucleon mean-free paths on intranuclear cascade results. Phys. Rev. Lett. 28, 757 (1972)

    Article  ADS  Google Scholar 

  27. M. Blann, H.K. Vonach, Global test of modified precompound decay models. Phys. Rev. C28, 1475 (1983)

    ADS  Google Scholar 

  28. M. Blann, ALICE-91: Statistical Model Code System with Fission Competition, RSIC Code Package PSR-146

  29. EXFOR/CSISRS (Experimental Nuclear Reaction Data File). Brookhaven National Laboratory, National Nuclear Data Center (2010), http://www.nndc.bnl.gov/exfor/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Tel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tel, E., Gokce, A.A., Ugur, F.A. et al. Alpha Emission Spectra of 27Al, 50,52Cr, 55Mn, 54,56Fe, 58,60Ni Nucleus for Neutron Induced Reaction. J Fusion Energ 32, 389–394 (2013). https://doi.org/10.1007/s10894-012-9582-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-012-9582-9

Keywords

Navigation