Skip to main content
Log in

Deuteron Induced (d,p) and (d,2p) Nuclear Reactions up to 50 MeV

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

Many studies have shown that the nuclear reactions of charged particles with nuclei are very important in many fields of nuclear physics. The interactions of deuterons with nuclei have been especially the subject of common research in the history of nuclear physics. Moreover, the knowledge of cross section for deuteron-nucleus interactions are required for various application such as space applications, accelerator driven sub-critical systems, nuclear medicine, nuclear fission reactors and controlled thermonuclear fusion reactors. Particularly, the future of controlled thermonuclear fusion reactors is largely dependent on the nuclear reaction cross section data and the selection of structural fusion materials. Finally, the reaction cross section data of deuteron induced reactions on fusion structural materials are of great importance for development and design of both experimental and commercial fusion devices. In this work, reaction model calculations of the cross sections of deuteron induced reactions on structural fusion materials such as Al (Aluminium), Ti (Titanium), Cu (Copper), Ni (Nickel), Co (Cobalt), Fe (Iron), Zr (Zirconium), Hf (Hafnium) and Ta (Tantalum) have been investigated. The new calculations on the excitation functions of 27 Al(d,2p)27 Mg, 47 Ti(d,2p)47 Sc, 65 Cu(d,2p)65 Ni, 58 Ni(d,2p)58 Co, 59 Co(d,2p)59 Fe, 58 Fe(d,p)59 Fe, 96 Zr(d,p)97 Zr, 180 Hf (d,p)181 Hf and 181 Ta(d,p)182 Ta have been carried out for incident deuteron energies up to 50 MeV. In these calculations, the equilibrium and pre-equilibrium effects for (d,p) and (d,2p) reactions have been investigated. The equilibrium effects are calculated according to the Weisskopf-Ewing (WE) Model. The pre-equilibrium calculations involve the new evaluated the Geometry Dependent Hybrid Model (GDH) and Hybrid Model. In the calculations the program code ALICE/ASH was used. The calculated results are discussed and compared with the experimental data taken from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.M. Qaim, J. Radioanal. Nucl. Chem. 284, 489–505 (2010)

    Article  Google Scholar 

  2. A. Trkov, Nucl. Eng. Technol. 37, 11–24 (2005)

    Google Scholar 

  3. D.C. Peaslee, Phys. Rev. 74, 1001–1013 (1948)

    Article  ADS  Google Scholar 

  4. A.G. Sitenko, Sov. Phys. Usp. 2, 195 (1959)

    Article  MathSciNet  ADS  Google Scholar 

  5. M. Avrigeanu et al., EPJ Web Conf. 21, 07003 (2012)

    Article  Google Scholar 

  6. M. Avrigeanu, V. Avrigeanu, J. Phys. 205, 012014 (2010)

    Google Scholar 

  7. E. Simeckova et al., Phys. Rev. C 84, 014605 (2011)

    Article  ADS  Google Scholar 

  8. E. Tel et al., Acta Physica Slovaca 54(2), 191 (2004)

    Google Scholar 

  9. S.L. Goyal, P. Gur, Pramana 72(2), 355 (2009)

    Article  ADS  Google Scholar 

  10. R.A. Forrest, J. Kopecky, Fusion Eng. Des. 82, 73 (2007)

    Article  Google Scholar 

  11. E. Tel et al., Phys. Rev. C 75, 034614 (2007)

    Article  ADS  Google Scholar 

  12. E. Tel et al., J. Phys. G: Nucl. Part. Phys. 29, 2169 (2003)

    Article  ADS  Google Scholar 

  13. E. Tel et al., J. Fusion Energ. 29, 290 (2010)

    Article  Google Scholar 

  14. E. Tel, J. Fusion Energ. 29, 332 (2010)

    Article  Google Scholar 

  15. E.E. Bloom, J. Nucl. Mater. 7, 258 (1998)

    Google Scholar 

  16. S. Şahin, M. Übeyli, J. Fusion Energ. 27, 271 (2008)

    Article  Google Scholar 

  17. M. Übeyli, E. Tel, J. Fusion Energ. 22, 2 (2003)

    Google Scholar 

  18. E. Tel et al., J. Fusion Energ. 28, 377 (2009)

    Article  Google Scholar 

  19. E. Tel et al., J. Fusion Energ. 27(3), 188 (2008)

    Article  MathSciNet  Google Scholar 

  20. R.A. Forrest, M.J. Loughlin, J. Nucl. Mater. 367, 1568–1573 (2007)

    Article  ADS  Google Scholar 

  21. Y. Watanabe et al., EPJ Web Conf. 2, 11003 (2010)

    Article  Google Scholar 

  22. H. Matsui et al., 23rd Symposium on Fusion Technology, (2004)

  23. M. R. Meier et al., Lawrence Livermore National Laboratory, LLNL-JRNL-416976 (2009)

  24. M. Rubel, Trans. Fusion Sci. Technol. 53, 459 (2008)

    Google Scholar 

  25. M. Victoria et al., Nucl. Fusion 41(8), 1047 (2001)

    Article  ADS  Google Scholar 

  26. IAEA Publication, Development of radiation resistant reactor core structural materials, http://www.iaea.org/About/Policy/GC/GC51/GC51InfDocuments/English/gc51inf-3-att7_en.pdf

  27. R.K. Smither, L.R. Greenwood, J. Nucl. Mater. 123, 1071 (1984)

    Article  ADS  Google Scholar 

  28. S. Takacs et al., Nucl. Instrum. Methods Phys. Res. B 260, 495 (2007)

    Article  ADS  Google Scholar 

  29. F. Ditroi et al., Nucl. Instrum. Methods Phys. Res. B 268, 2571 (2010)

    Article  ADS  Google Scholar 

  30. S.J. Zinkle, A. Kohyama, SOFE-IEEE/NPSS Symposium on Fusion Engineering, 477 (2002)

  31. S. Takacs et al., Nucl. Instrum. Methods Phys. Res. B 268, 3443 (2010)

    Article  ADS  Google Scholar 

  32. K. Ehrlich et al., European Material Assessment Meeting, (2001)

  33. C.H.M. Broeders, A. Yu. Konobeyev, Yu. A. Korovin, V.P. Lunev, M. Blann ALICE/ASH—pre-compound and evaporation model code system for calculation of excitation functions, energy and angular distributions of emitted particles in nuclear reactions at intermediate energies, FZK 7183, May 2006, http://bibliothek.fzk.de/zb/berichte/FZKA7183.pdf

  34. V.F. Weisskopf, D.H. Ewing, Phys. Rev. 57, 472 (1940)

    Article  ADS  Google Scholar 

  35. P.E. Hodgson, E. Betak, Phys. Rep. 374, 1–89 (2003)

    Article  ADS  Google Scholar 

  36. M. Blann, Phys. Rev. Lett. 27, 337 (1971)

    Article  ADS  Google Scholar 

  37. M. Blann, H.K. Vonach, Phys. Rev. C 28, 1475 (1983)

    Article  ADS  Google Scholar 

  38. A.V. Ignatyuk et al., Yad. Fiz. 29, 875 (1979)

    Google Scholar 

  39. Brookhaven National Laboratory, National Nuclear Data Center, EXFOR/CSISRS (Experimental Nuclear Reaction Data File). Database version of October 12, 2009, (http://www.nndc.bnl.gov/exfor/) (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Tel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yiğit, M., Tel, E. & Kara, A. Deuteron Induced (d,p) and (d,2p) Nuclear Reactions up to 50 MeV. J Fusion Energ 32, 362–370 (2013). https://doi.org/10.1007/s10894-012-9579-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-012-9579-4

Keywords

Navigation