Advertisement

Journal of Fusion Energy

, Volume 32, Issue 3, pp 336–343 | Cite as

Calculations of (n,α) Cross Sections on Some Structural Fusion Materials for Fusion Reactor Technology

  • M. Yiğit
  • E. Tel
  • G. Tanır
Original Research

Abstract

The knowledge of cross section for emission of light charged particles (p, d, t, and α) induced by fast neutrons on structural fusion materials has a critical importance on fusion reactors. The gas production arising from (n,p) and (n,α) reactions causes seriously radiation damage in fusion reactor structure. The radiation damage in fusion related materials is a large problem need to be overcome for development of fusion reactor technology. Particularly, the (n,α) reaction cross section data are required to estimation of the radiation damage effects on structural fusion materials. Therefore, the cross section data for (n,α) reaction induced by fast neutrons are of increasing importance for the success of future fusion reactors. In this study, reaction model calculations of the cross sections of neutron induced reactions on structural fusion materials such as 29 Si, 30 Si, 48 Ti, 50 Ti, 50 Cr, 54 Cr, 54 Fe and 58 Fe have been investigated. The new calculations on the excitation functions of 29 Si (n,α) 26 Mg, 30 Si (n,α) 27 Mg, 48 Ti (n,α) 45 Ca, 50 Ti (n,α) 47 Ca, 50 Cr (n,α) 47 Ti, 54 Cr (n,α) 51 Ti, 54 Fe (n,α) 51 Cr and 58 Fe (n,α) 55 Cr have been carried out for incident neutron energies up to 30 MeV. In these calculations, the pre-equilibrium and equilibrium effects for (n,α) reactions have been investigated. The pre-equilibrium calculations involve the new evaluated the geometry dependent hybrid model, hybrid model and the cascade exciton model. The equilibrium effects of the excitation functions for the investigated reactions are calculated according to the Weisskopf–Ewing model. Also in the present work, the (n,α) reaction cross sections have calculated by using evaluated empirical formulas developed by Tel et al. at 14–15 MeV energy. The calculated results have been discussed and compared with the available experimental data and found agreement with each other.

Keywords

Empirical formulas (n,α) reaction Cross-section Fusion structural materials 

References

  1. 1.
    E. Tel et al., J. Fusion Energ. 30, 26 (2011)CrossRefGoogle Scholar
  2. 2.
    S. Şahin et al., Fusion Tech. 10, 84 (1986)Google Scholar
  3. 3.
    E. Tel et al., J. Fusion Energ. 31(2), 194 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    M. Übeyli, E. Tel, J. Fusion Energ. 22, 2 (2003)Google Scholar
  5. 5.
    M. Walt, in Fast neutron physics, part I: techniques, ed. by J.B. Marion, J.L. Fowler (Interscience, New York, 1960), p. 509Google Scholar
  6. 6.
    S. Şahin, M. Übeyli, J. Fusion Energ. 27, 271 (2008)CrossRefGoogle Scholar
  7. 7.
    S.M. Qaim, 14 MeV Activation Cross Sections Handbook of Spectroscopy, vol. 3 (CRC Press, Boca Raton, Florida, 1981), p. 141Google Scholar
  8. 8.
    R.A. Forrest, AERE R 12419 (Harwell, UK, 1986)Google Scholar
  9. 9.
    M. Belgaid, M. Asghar, Nucl. Instr. Method B 142, 463 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    C.H.M. Broeders, A.Yu. Konobeyev, Nucl. Phys. A 780, 130 (2006)ADSGoogle Scholar
  11. 11.
    C.H.M. Broeders, AYu. Konobeyev, Appl. Radiat. Isot. 65, 454 (2007)CrossRefGoogle Scholar
  12. 12.
    A.D. Majeddin et al., International Nuclear Data Section, 28 (20) (1997)Google Scholar
  13. 13.
    E. Tel et al., Acta Phys. Slov. 54(2), 191 (2004)Google Scholar
  14. 14.
    R.A. Forrest, J. Kopecky, Fusion Eng. Des. 82, 73 (2007)CrossRefGoogle Scholar
  15. 15.
    S.L. Goyal, P. Gur, Pramana 72(2), 355 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    W. R. Meier et al., Lawrence livermore national laboratory, LLNL-JRNL-416976 (2009)Google Scholar
  17. 17.
    IAEA Publication, Development of radiation resistant reactor core structural materials, http://www.iaea.org/About/Policy/GC/GC51/GC51InfDocuments/English/gc51inf-3-att7_en.pdf
  18. 18.
    M. Rubel, Trans Fusion Sci Technol 53, 459 (2008)Google Scholar
  19. 19.
    M. Victoria et al., Nucl. Fusion 41(8), 1047 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    P.M. Raole et al., Trans. IIM 62, 2–105 (2009)Google Scholar
  21. 21.
    E. Tel et al., Int. J. Mod. Phys. E. 17(3), 567 (2008)MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    Brookhaven National Laboratory, National Nuclear Data Center, EXFOR/CSISRS (Experimental Nuclear Reaction Data File). Database version of October 12, 2009, http://www.nndc.bnl.gov/exfor/ (2009)
  23. 23.
    V.F. Weisskopf, D.H. Ewing, Phys. Rev. 57, 472 (1940)ADSCrossRefGoogle Scholar
  24. 24.
    P.E. Hodgson, E. Betak, Phys Rep 374, 1–89 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    M. Blann, Phys. Rev. Lett. 27, 337 (1971)ADSCrossRefGoogle Scholar
  26. 26.
    M. Blann, Phys. Rev. Lett. 28, 757 (1972)ADSCrossRefGoogle Scholar
  27. 27.
    M. Blann, H.K. Vonach, Phys. Rev. C 28, 1475 (1983)ADSGoogle Scholar
  28. 28.
    A. Iwamoto, K. Harada, Phys. Rev. C 26, 1821 (1982)ADSGoogle Scholar
  29. 29.
    K. Sato et al., Phys. Rev. C 28, 1527 (1983)ADSGoogle Scholar
  30. 30.
    A.Yu. Konobeyev, A.Yu. Korovin, Kerntechnik 59, 72 (1994)Google Scholar
  31. 31.
    C.H. M. Broeders et al., ALICE/ASH—pre-compound and evaporation model code system for calculation of excitation functions, energy and angular distributions of emitted particles in nuclear reactions at intermediate energies, FZK 7183, May 2006, http://bibliothek.fzk.de/zb/berichte/FZKA7183.pdf
  32. 32.
    AYu. Konobeyev et al., Acta Phys. Slov. 45(6), 705 (1995)Google Scholar
  33. 33.
    K.K. Gudima et al., Nucl. Phys. A 401, 329 (1983)ADSGoogle Scholar
  34. 34.
    S.G. Mashnik, User Manual for the Code CEM95 (Joint Institute for Nuclear Research, Dubna, 1995)Google Scholar
  35. 35.
    V.S. Barashenkov, V.D. Toneev, Interaction of High Energy Particle and Nuclei with Atomic Nuclei, Atomizdat, Moscow, (1972)Google Scholar
  36. 36.
    V.S. Barashenkov et al., Interaction of particles and nuclei of high and ultrahigh energy with nuclei. Usp. Fiz. Nauk. 109, 91–136 (1973)CrossRefGoogle Scholar
  37. 37.
    S.G. Mashnik et al., CEM03.01User Manual, Los Alamos National Laboratory Report, LA-UR-05-7321 (2005)Google Scholar
  38. 38.
    S.G. Mashnik et al., Cem03.03 and LAQGSM03 Event Generators for the MCNP6, MCNPX, and MARS15 Transport Codes. Invited lectures presented at the joint ICTP-IAEAAdvanced Workshop on Model Codes for Spallation Reactions, February 4–8,ICTP, Trieste, Italy, LA-UR-08-2931, Los Alamos (2008)Google Scholar
  39. 39.
    E. Tel et al., J. Phys. G: Nucl. Part. Phys. 29, 2169 (2003)ADSCrossRefGoogle Scholar
  40. 40.
    E. Tel et al., J. Fusion Energ. 27(3), 188 (2008)MathSciNetCrossRefGoogle Scholar
  41. 41.
    E. Tel et al., Phys. Rev. C 75, 034614 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    A. Aydin et al., J. Fusion Energ. 27(4), 314 (2008)MathSciNetCrossRefGoogle Scholar
  43. 43.
    E. Tel et al., Kerntechnik 76(2), 136 (2011)MathSciNetGoogle Scholar
  44. 44.
    A.V. Ignatyuk et al., Yadernaja Fizika 29, 875 (1979)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Arts and ScienceAksaray UniversityAksarayTurkey
  2. 2.Department of Physics, Faculty of Arts and ScienceOsmaniye Korkut Ata UniversityOsmaniyeTurkey
  3. 3.Department of Physics, Faculty of Arts and ScienceGazi UniversityAnkaraTurkey

Personalised recommendations