Skip to main content
Log in

Radial Confinement in Non-Symmetric Quadrupolar Mirrors

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

Charged particles in symmetric quadrupolar mirrors are radially confined and have an associated radial invariant. In a symmetric quadrupolar field the magnetic field modulus satisfies \( B(z) = - B(z) \) along the axis if z = 0 defines the field minimum of the mirror, and the quadrupolar field has a corresponding symmetry. The field in the anchor cells of a tandem mirror need not obey a corresponding symmetry. In this paper, the radial confinement of non-symmetric mirrors is examined by tracing sample ions in the magnetic field. It is found that for non-symmetric mirrors, particles are typically not confined, and no radial invariant exists for such devices. Without attention to this effect in the field and coil design, radial confinement of trapped particles may be lost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. O. Ågren, V.E. Moiseenko, K. Noack, A. Hagnestål, Eur Phys J D 66, 28 (2012)

    Article  ADS  Google Scholar 

  2. O. Ågren, V.E. Moiseenko, C. Johansson, N. Savenko, Phys Plasmas 12, 122503 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  3. O. Ågren, V.E. Moiseenko, Phys Plasmas 13, 052501 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  4. L.S. Hall, B. McNamara, Phys Fluids 18, 552 (1975)

    Article  ADS  Google Scholar 

  5. P.J. Catto, R.D. Hazeltine, Phys Fluids 24, 1663 (1981)

    Article  ADS  MATH  Google Scholar 

  6. D.D. Ryutov, G.V. Stupakov, in Reviews of Plasma Physics, vol. 13, ed. by B.B. Kadomtsev (Consultants Bureau, New York, 1987), p. 93

    Chapter  Google Scholar 

  7. R.H. Cohen, Nucl Fusion 19, 1579 (1979)

    Article  ADS  Google Scholar 

  8. R.H. Cohen, W.M. Newins, G.V. Stupakov, Nucl Fusion 22, 611 (1979)

    Article  Google Scholar 

  9. T. Ito, I. Katanuma, Phys Plasmas 12, 082512 (2005)

    Article  ADS  Google Scholar 

  10. I. Katanuma, K. Yagi, Y. Haraguchi, N. Ichioka, S. Masaki, M. Ichimura, T. Imai, Phys Plasmas 17, 112506 (2010)

    Article  ADS  Google Scholar 

  11. K.C. Shaing, C.T. Hsu, Phys Plasmas 19, 022502 (2012)

    Article  ADS  Google Scholar 

  12. Y. Turkin, C.D. Beidler, H. Maaßberg, S. Murakami, V. Tribaldos, A. Wakasa, Phys Plasmas 18, 022505 (2011)

    Article  ADS  Google Scholar 

  13. N. Sorokina, A. Burdakov, I. Ivanov, K. Kuklin, S. Polosatkin, S. Popov, V. Postupaev, A. Rovenskikh, A. Shoshin, I. Schudlo, Nucl Instrum Methods Phys Res A 623, 750 (2010)

    Article  ADS  Google Scholar 

  14. T.C. Simonen, A. Anikeev, P. Bagryansky, A. Beklemishev, A. Ivanov, A. Lizunov, V. Maximov, V. Prikhodko, Yu. Tsidulko, J Fusion Energ 29, 558 (2010)

    Article  Google Scholar 

  15. D.D. Ryutov, H.L. Berk, B.I. Cohen, A.W. Molvik, T.C. Simmonen, Phys Plasmas 18, 092301 (2011)

    Article  ADS  Google Scholar 

  16. O. Ågren, V.E. Moiseenko, K. Noack, A. Hagnestål, Fusion Sci Technol 57, 326 (2010)

    Google Scholar 

  17. K. Noack, V.E. Moiseenko, O. Ågren, A. Hagnestål, Ann Nucl Energ 38, 578 (2011)

    Article  Google Scholar 

  18. O. Ågren, N. Savenko, Phys Plasmas 11, 5041 (2004)

    Article  ADS  Google Scholar 

  19. A. Hagnestål, O. Ågren, V.E. Moiseenko, J Fusion Energ 30, 144 (2011)

    Article  Google Scholar 

  20. A. Hagnestål, O. Ågren, V.E. Moiseenko, J Fusion Energ 31, 379 (2012)

    Article  Google Scholar 

  21. A. Hagnestål, O. Ågren and V.E. Moiseenko, J. Fusion Energ. (2011). doi:10.1007/s10894-011-9493-1

  22. L.D. Pearlstein, T.B. Kaiser, W.A. Newcomb, Phys Fluids 24, 1326 (1981)

    Article  ADS  MATH  Google Scholar 

  23. T.B. Kaiser, L.D. Pearlstein, Phys Fluids 26, 3053 (1983)

    Article  ADS  MATH  Google Scholar 

  24. R.J. Goldston, R.B. White, A.H. Boozer, Phys Rev Lett 47, 647 (1981)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Prof. Mats Leijon is acknowledged for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hagnestål.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagnestål, A., Ågren, O. & Moiseenko, V.E. Radial Confinement in Non-Symmetric Quadrupolar Mirrors. J Fusion Energ 32, 327–335 (2013). https://doi.org/10.1007/s10894-012-9573-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-012-9573-x

Keywords

Navigation