Skip to main content

Advertisement

Log in

Prospects for 13N Production in a Small Plasma Focus Device

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

In this paper, the feasibility of 13N radioisotope production by a small plasma focus device for using in positron emission tomography (PET) has been studied. A large quantity of experimental data on the deuteron beam emission in dense plasma focuses are summarized and has been used in estimation of deuteron energy spectrum, intensity and angular distribution. The induced activity of 13N by 12C(d,n)13N reaction in an external solid target is calculated for different ‘m’ values (the power in energy distribution function of deuterons), and for a repetition rate plasma focus. A small plasma focus can produce 13N radionuclides in the order of 10 kBq in one shot, and it can be increased to few 10 MBq in a rep rate working mode with f = 10 Hz after 600 s operating time. Whereas a typical PET scan in myocardial blood perfusion assessment requires about 4 GBq radiopharmaceutical of 13N, it is concluded that a small plasma focus device, even with repetition frequency of f = 10 Hz can’t produce adequate 13N activity for this special PET imaging. Nonetheless, higher producible activities in higher energy PF devices and by endogenous production methods (i.e., nuclear reactions are induced inside the pinch itself) maybe result to introduction of an optimized repetitive high energy plasma focus as an alternative for cyclotrons in this special application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Sadowski, J. Zebrowski, E. Rydygier, J. Kucinski, Plasma Phys. Control Fusion 30(6), 763–770 (1988)

    Article  ADS  Google Scholar 

  2. V. Nardi et al., IEEE Trans. Plasma Sci. 16(3), 374–378 (1988)

    Article  ADS  Google Scholar 

  3. M. Scholz, B. Bienkowska, V.A. Gribkov, Czech J. Phys. 52(D), 85–92 (2002)

    Google Scholar 

  4. B. Bienkowska et al., Acta Phys. Slovaca 54(4), 401–407 (2004)

    Google Scholar 

  5. E. Angeli et al., Appl. Radiat. Isotopes 63(5–6), 545–551 (2005)

    Article  Google Scholar 

  6. M. Sumini et al., Nucl. Instrum. Meth. A 562(2), 1068–1071 (2006)

    Article  ADS  Google Scholar 

  7. M. Sumini et al., in 7th IEEE Nuclear Science Symposium Conference Record, pp. 1637–1642 (2007)

  8. M.V. Roshan, S.V. Springham, R.S. Rawat, P. Lee, IEEE Trans. Plasma Sci. 38(12), 3393–3397 (2010)

    Article  ADS  Google Scholar 

  9. S.M. Sadat kiai et al., J. Fusion Energ. 30(2), 111–115 (2011)

    Article  Google Scholar 

  10. S. Castillo, Medical and Statistical Review of 13N Ammonia Positron Emission Tomography (1999), http://www.fda.gov/drugs/developmentapprovalprocess/manufacturing/ucm183026. Accessed 03 Feb 2012

  11. R.L. Gullickson, H.L. Sahlin, J. Appl. Phys. 49(3), 1099–1105 (1978)

    Article  ADS  Google Scholar 

  12. M.V. Roshan, S.V. Springham, A.R. Talebitaher, R.S. Rawat, P. Lee, Phys. Lett. A 373(8), 851–855 (2009)

    Article  ADS  Google Scholar 

  13. M.V. Roshan, S.V. Springham, A. Rajasegaran, A.R. Talebitaher, R.S. Rawat, P. Lee, Phys. Lett. A 373(41), 3771–3774 (2009)

    Article  ADS  Google Scholar 

  14. V. Nardi, W.H. Bostick, J. Feugeas, W. Prior, C. Cortese, in Proceedings of the 7th International Conference PP CN, Innsbruck, 1978, vol. II, p. 143

  15. M. Sadowski, H. Schmidt, H. Herold, Phys. Lett. A 83(9), 435 (1981)

    Article  ADS  Google Scholar 

  16. W. Stygar, G. Gerdin, F. Venneri, J. Mandreakas, Nucl. Fusion 22(9), 1161–1172 (1982)

    Article  Google Scholar 

  17. F.C. Young, J. Golden, C.A. Kapetanakos, Rev. Sci. Instrum. 48(4), 432–443 (1977)

    Article  ADS  Google Scholar 

  18. E.V. Benton, W.D. Nix, Nucl. Instrum. Methods 67(2), 343–347 (1969)

    Article  ADS  Google Scholar 

  19. L. Bertalot, H. Herold et al., Phys. Lett. A 79(5–6), 389–392 (1980)

    Article  ADS  Google Scholar 

  20. H. Kelly, A. Marquez, Plasma Phys. Control Fusion 38(11), 1931–1942 (1996)

    Article  ADS  Google Scholar 

  21. S.V. Springham, S. Lee, M.S. Rafique, Plasma Phys. Control Fusion 42(10), 1023–1032 (2000)

    Article  ADS  Google Scholar 

  22. V. Nardi et al., IEEE Trans. Plasma Sci. 16(3), 368–373 (1988)

    Article  ADS  Google Scholar 

  23. I.F. Belayaeva, N.V. Filippov, Nucl. Fusion 13(6), 881–882 (1973)

    Article  Google Scholar 

  24. H. Krompholz, L. Michel, Appl. Phys. 13(1), 29–35 (1977)

    Article  ADS  Google Scholar 

  25. M.J. Bernstein, G.G. Comisar, Phys. Fluid 15(4), 700–707 (1972)

    Article  ADS  Google Scholar 

  26. G. Gerdin, J. Durham, R. Ilic, Nucl. Tracks Rad. Meas. 5(3), 299–309 (1981)

    Article  Google Scholar 

  27. H. Schmidt, Atomkernenerg/Kernt 36, 161 (1980)

    Google Scholar 

  28. M.V. Roshan, R.S. Rawat, A. Talebitaher, P. Lee, S.V. Springham, Phys. Plasmas 16, 53301 (2009)

    Article  ADS  Google Scholar 

  29. A. Mozer, M. Sadowski, H. Herold, H. Schmidt, J. Appl. Phys. 53, 2959 (1982)

    Article  ADS  Google Scholar 

  30. G.F. Knoll, Radiation Detection and Measurement, 3rd edn. (Wiley, NewYork, 2000), p. 31

  31. T. Tsoulfanidis, Measurement and Detection of Radiation, 2nd edn. (Taylor & Francis, NewYork, 1995), p. 126

  32. R. L. Gullickson, in Proceedings of the Second International Workshop on Plasma Physics, Lebedev Physics Institute, Moscow, 14–19 Sept 1981, p. 154

  33. M. Frignani, Simulation of Gas Breakdown and Plasma Dynamics in Plasma Focus Devices. PhD thesis in Energy Engineering, Alma Mater Studiorum University of Bologna, 2007

  34. J.S. Brzosko, V. Nardi, Phys. Lett. A 155(2–3), 162–168 (1991)

    Article  ADS  Google Scholar 

  35. J.S. Brzosko, V. Nardi, J.R. Brzosko, D. Goldstein, Phys. Lett. A 192, 250–257 (1994)

    Article  ADS  Google Scholar 

  36. J.S. Brzosko et al., in Application of Accelerators in Research and Industry, 16th International Conference, AIP, pp. 277–280 (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Shirani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shirani, B., Abbasi, F. Prospects for 13N Production in a Small Plasma Focus Device. J Fusion Energ 32, 235–241 (2013). https://doi.org/10.1007/s10894-012-9558-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-012-9558-9

Keywords

Navigation