Advertisement

Journal of Fusion Energy

, Volume 32, Issue 1, pp 97–102 | Cite as

Deuteron-Induced Cross Section Calculations of Some Structural Fusion Materials

  • A. Kaplan
  • H. Özdoğan
  • A. Aydın
  • E. Tel
Original Research

Abstract

The development of fusion materials for the safety of fusion power systems and understanding nuclear properties is important. The reaction cross-section data have a critical importance on fusion reactors and development for fusion reactor technology. In this study, the theoretical cross sections of some structural fusion materials such as Cr, V, Fe, Ni, Zr and Ta in deuteron-induced reactions have been investigated. The new calculations on the excitation functions of 50Cr(d, α)48V, 51V(d, 2n)51Cr, 51V(d, 4n)49Cr, 54Fe(d, α)52Mn, 54Fe(d, n)55Co, 58Ni(d, α)56Co, 96Zr(d, n)97Nb, 96Zr(d, 2n)96Nb and 181Ta(d, 2n)181W reactions have been carried out up to 90 MeV incident deuteron energies. In these calculations, the pre-equilibrium and equilibrium effects have been investigated. The pre-equilibrium calculations involve the geometry dependent hybrid model and hybrid model. Equilibrium effects have been calculated according to the Weisskopf–Ewing model. The ALICE/ASH computer code has been used in all calculations. The calculated results have been compared with the experimental data existing in EXFOR database and found to be in good agreement.

Keywords

Deuteron-induced reactions Geometry dependent hybrid model Reaction cross section Structural fusion materials 

References

  1. 1.
    E.E. Bloom, J. Nucl. Mater. 258–263, 7 (1998)CrossRefGoogle Scholar
  2. 2.
    A. Kaplan et al., Phys. Atom. Nucl. 72(6), 903 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Wu, Plasma Sci. Technol. 3(6), 1085 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    Y. Chen, Y. Wu, Fusion Eng. Des. 49–50, 507 (2000)CrossRefGoogle Scholar
  5. 5.
    Y. Wu et al., Fusion Eng. Des. 51–52, 395 (2000)CrossRefGoogle Scholar
  6. 6.
    Y. Wu, in International Symposium on Fusion Nuclear Technology, San Diego, USA, 7–13 April 2002Google Scholar
  7. 7.
    S.J. Zinkle et al., J. Nucl. Mater. 258–263, 205 (1998)CrossRefGoogle Scholar
  8. 8.
    D.L. Smith et al., Fusion Eng. Des. 41, 7 (1998)CrossRefGoogle Scholar
  9. 9.
    H. Matsui et al., J. Nucl. Mater. 233–237, 92 (1996)CrossRefGoogle Scholar
  10. 10.
    W.R. Johnson, J.P. Smith, J. Nucl. Mater. 258–263, 1425 (1998)CrossRefGoogle Scholar
  11. 11.
    N.P. Taylor, C.B.A. Forty, J. Nucl. Mater. 283–287, 28 (2000)CrossRefGoogle Scholar
  12. 12.
    E.T. Cheng, J. Nucl. Mater. 258–263, 1767 (1998)CrossRefGoogle Scholar
  13. 13.
    Q. Huang et al., J. Nucl. Mater. 307–311, 1031 (2002)CrossRefGoogle Scholar
  14. 14.
    P.M. Raole et al., Trans. IIM 62(2), 105 (2009)Google Scholar
  15. 15.
    M. Victoria et al., Nucl. Fusion 41(8), 1047 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    K. Ehrlich, Philos. Trans. R. Soc. Lond. A 357, 595 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    A. Kaplan et al., J. Fusion Energ. 29(4), 353 (2010)CrossRefGoogle Scholar
  18. 18.
    H. Nifenecker et al., Prog. Part. Nucl. Phys. 43, 683 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    N. Jarmie et al., Phys. Rev. C 29, 2031 (1984)ADSCrossRefGoogle Scholar
  20. 20.
    R.E. Brown, N. Jarmie, Phys. Rev. C 41, 1391 (1990)ADSCrossRefGoogle Scholar
  21. 21.
    A. Krauss et al., Nucl. Phys. A 467, 273 (1987)ADSCrossRefGoogle Scholar
  22. 22.
    A. Krauss et al., Nucl. Phys. A 465, 150 (1987)ADSCrossRefGoogle Scholar
  23. 23.
    S. Engstler et al., Phys. Lett. B 202, 179 (1988)ADSCrossRefGoogle Scholar
  24. 24.
    Y. Jingsheng et al., Nucl. Phys. A 621, 127 (1997)CrossRefGoogle Scholar
  25. 25.
    A. Kaplan et al., J. Fusion Energ. 29(2), 181 (2010)CrossRefGoogle Scholar
  26. 26.
    R.A. Forrest, J. Kopecky, Fusion Eng. Des. 82, 73 (2007)CrossRefGoogle Scholar
  27. 27.
    S.L. Goyal, P. Gur, Pramana 72(2), 355 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    A. Aydin et al., J. Fusion Energ. 27(4), 308 (2008)MathSciNetCrossRefGoogle Scholar
  29. 29.
    A. Aydin et al., J. Fusion Energ. 27(4), 314 (2008)MathSciNetCrossRefGoogle Scholar
  30. 30.
    E. Tel et al., J. Phys. G: Nucl. Part. Phys. 29, 2169 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    E. Tel et al., Phys. Rev. C 75, 034614 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    E. Tel et al., Int. J. Mod. Phys. E 17(3), 567 (2008)MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    E. Tel et al., J. Fusion Energ. 29(4), 322 (2010)CrossRefGoogle Scholar
  34. 34.
    E. Tel et al., J. Fusion Energ. 29, 290 (2010)CrossRefGoogle Scholar
  35. 35.
    E. Tel et al., J. Fusion Energ. 30, 26 (2011)CrossRefGoogle Scholar
  36. 36.
    T. Nishio et al., J. Nucl. Sci. Technol. 2, 955 (2002)Google Scholar
  37. 37.
    H.A. Yalım et al., J. Fusion Energ. 29(1), 55 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    V.F. Weisskopf, D.H. Ewing, Phys. Rev. 57, 472 (1940)ADSCrossRefGoogle Scholar
  39. 39.
    K.K. Gudima, S.G. Mashnik, V.D. Toneev, Nucl. Phys. A 401, 329 (1983)ADSCrossRefGoogle Scholar
  40. 40.
    M. Blann, H.K. Vonach, Phys. Rev. C 28, 1475 (1983)ADSCrossRefGoogle Scholar
  41. 41.
    G.D. Harp, J.M. Miller, Phys. Rev. C 3, 1847 (1971)ADSCrossRefGoogle Scholar
  42. 42.
    H. Feshbach, A. Kerman, S. Koonin, Ann. Phys. (NY) 125, 429 (1980)MathSciNetADSCrossRefGoogle Scholar
  43. 43.
    T. Tamura, T. Udagawa, H. Lenske, Phys. Rev. C 26, 379 (1982)ADSCrossRefGoogle Scholar
  44. 44.
    M. Blann, Phys. Rev. Lett. 27, 337 (1971)ADSCrossRefGoogle Scholar
  45. 45.
    M. Blann, Annu. Rev. Nucl. Sci. 25, 123 (1975)ADSCrossRefGoogle Scholar
  46. 46.
    M. Blann, J. Bisplinghoff, Code ALICE/LIVERMORE 82 UCID-19614, (1982)Google Scholar
  47. 47.
    M. Blann, A. Mignerey, W. Scobel, Nukleonika 21, 335 (1976)Google Scholar
  48. 48.
    C.H.M. Broeders, A.Y. Konobeyev, Y.A. Korovin, V.P. Lunev, M. Blann, ALICE/ASH—pre-compound and evaporation model code system for calculation of excitation functions, energy and angular distributions of emitted particles in nuclear reactions at intermediate energies, FZK 7183, May (2006), http://bibliothek.fzk.de/zb/berichte/FZKA7183.pdf
  49. 49.
    A.V. Ignatyuk, K.K. Istekov, G.N. Smirenkin, Yad. Fiz. 29, 875 (1979). [Sov. J. Nucl. Phys. 29, 450 (1979)]Google Scholar
  50. 50.
    M. Blann, Code ALICE-91, PSR-146, Statistical Model Code System with Fission Competition, Oak Ridge National Laboratory, RSICC Peripheral Shielding Routine Collection, Lawrence Livermore National Laboratory, Livermore, California and IAEAGoogle Scholar
  51. 51.
    Brookhaven National Laboratory, National Nuclear Data Center, EXFOR/CSISRS (Experimental Nuclear Reaction Data File). Database version of October 12, 2009 (2009), http://www.nndc.bnl.gov/exfor/

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Arts and SciencesSüleyman Demirel UniversityIspartaTurkey
  2. 2.Department of Physics, Faculty of Arts and SciencesKırıkkale UniversityKirikkaleTurkey
  3. 3.Department of Physics, Faculty of Arts and SciencesOsmaniye Korkut Ata UniversityOsmaniyeTurkey

Personalised recommendations