Skip to main content
Log in

Symplectic Simulation of Fast Alpha Particle Radial Transport in Tokamaks in the Presence of TF Ripples and a Neoclassical Tearing Mode

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

A Hamiltonian guiding centre drift orbit code based on a symplectic integration algorithm, which enables the efficient calculation of particle trajectories and diffusion coefficients, is applied to fast alpha particle motion in magnetically perturbed tokamak plasmas. In particular, fast ion drift motion is examined in the presence of a stationary, low mode-number MHD magnetic perturbation in a toroidally rippled tokamak with circular flux surface. The main focus of our study is to investigate the dependence of the radial diffusion coefficient of energetic ions on their energy, on the perturbation strength and the localization of the perturbation. As expected, the resonance between bounce motion and toroidal field ripples plays a significant role in this context. For an ensemble of fast ions uniformly distributed in toroidal angle but with a given poloidal starting position their radial transport coefficient takes on higher values in the neighbourhood of resonance speeds and can exhibit there local minima, i.e. it shows an M-shaped speed dependence around resonances for sufficiently strong ripple perturbations. Expectedly, the addition of a modelled low-mode number neoclassical tearing mode perturbation will modify the pure ripple resonance structure of the radial diffusion coefficient. Depending on the strength and localization of the MHD mode it can cause enhancement or degradation of the radial ripple diffusion coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. W. Heidbrink, G. Sadler, Nucl. Fusion 34, 535 (1994)

    Article  ADS  Google Scholar 

  2. S. Putvinski et al., Phil. Trans. R. Soc. Lond. 357, 493 (1999)

    Article  ADS  Google Scholar 

  3. S. Zweben et al., Nucl. Fusion 40, 91 (2000)

    Article  ADS  Google Scholar 

  4. A. Fasoli et al., Nucl. Fusion 47, S264 (2007)

    Article  ADS  Google Scholar 

  5. R. Goldstone, R. White, A. Boozer, Phys. Rev. Lett. 47, 647 (1981)

    Article  ADS  Google Scholar 

  6. S. Zweben et al., Nucl. Fusion 39, 1097 (1999)

    Article  ADS  Google Scholar 

  7. E. Carolipio et al., Nucl. Fusion 42, 853 (2002)

    Article  ADS  Google Scholar 

  8. H. Mynick, Phys. Fluids B 5, 5 (1993)

    Google Scholar 

  9. V. Yavorskij et al., Nucl. Fusion 38, 1565 (1998)

    Article  ADS  Google Scholar 

  10. E. Strumberger et al., New J. Phys. 10, 023017 (2008)

    Article  ADS  Google Scholar 

  11. P. Channell, F. Neri, Fields Inst. Commun. 10, 45 (1996)

    MathSciNet  Google Scholar 

  12. P. Channell, C. Scovel, Nonlinearity 3, 231 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. H. Qin, X. Guan, Phys. Rev. Lett. 100, 035006 (2008)

    Article  ADS  Google Scholar 

  14. H. Qin, X. Guan, W.M. Tang, Phys. Plasma 16, 042510 (2009)

    Article  ADS  Google Scholar 

  15. H. Goldstein, Classical Mechanics (Addison Wesley Publications, Boston, 2002)

  16. A. Boozer, G. Petravic, Phys. Fluids 24, 851 (1981)

    Article  ADS  MATH  Google Scholar 

  17. S. Dettrick, H. Gardner, L. Painter, Aust. J. Phys. 52, 715 (1999)

    ADS  Google Scholar 

  18. J. Huba, NRL Plasma Formulary (Naval Research Lab., Washington, DC, 2007), pp. 31–34

  19. L. Spitzer, Physics of Fully Ionized Gases, 2nd edn. (Interscience, 1962)

  20. B. Chirikov, D. Shepelyanskii, Sov. Phys. Tech. Phys. 27, 156 (1982)

    Google Scholar 

  21. K. Schoepf, et al., in Proceedings of 33rd EPS Conference on Plasma Physics, Rome, Italy, June 2006, ECA vol. 301, P-1.192 (2006)

  22. H. Mimata et al., Plasma Fusion Res. 4, 008 (2009)

    Article  ADS  Google Scholar 

  23. R. White, M. Chance, Phys. Fluids 27, 2455 (1984)

    Article  ADS  MATH  Google Scholar 

  24. P. Yushmanov, JETP Lett. 35, 12 (1982)

    Google Scholar 

  25. V. Goloborod’ko, Y. Kolesnichenko, V. Yavorskij, in Proceedings of 10th International Conference on Plasma Physics & Controlled Nuclear Fusion Research, vol. 2 (1985), p. 179

  26. V. Yavorskij et al., Plasma Phys. Contr. Fusion 43, 249 (2001)

    Article  ADS  Google Scholar 

  27. V. Goloborod’ko, V. Yavorskij, Ukrain. J. Phys. 42, 143 (1997)

    Google Scholar 

  28. V. Yavorskij, Z. Andruschenko, J. Edentrasser, V. Goloborod’ko, Phys. Plasma 6, 3853 (1999)

    Google Scholar 

  29. V. Yavorskij et al., Nucl. Fusion 50, 084022 (2010)

    Article  ADS  Google Scholar 

  30. P. Cahyna et al., Plasma Phys. Rep. 34, 746 (2008)

    Article  ADS  Google Scholar 

  31. E. Nardon et al., J. Nucl. Mater. 390, 773 (2009)

    Article  ADS  Google Scholar 

  32. Y. Liang et al., Nucl. Fusion 50, 025013 (2010)

    Article  ADS  Google Scholar 

  33. V. Yavorskij et al., Paper P4.029 at 38th EPS Conference on Plasma Physics, Strasbourg, 2011

Download references

Acknowledgments

This work, supported by the European Community under the contract of Association between EURATOM and the Austrian Academy of Sciences (OEAW), was carried out within the framework of the European Fusion Development Agreement. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, M., Schoepf, K., Goloborod’ko, V. et al. Symplectic Simulation of Fast Alpha Particle Radial Transport in Tokamaks in the Presence of TF Ripples and a Neoclassical Tearing Mode. J Fusion Energ 31, 547–561 (2012). https://doi.org/10.1007/s10894-011-9503-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-011-9503-3

Keywords

Navigation