Skip to main content

Fusion Generated Fast Particles by Laser Impact on Ultra-Dense Deuterium: Rapid Variation with Laser Intensity


Nuclear fusion D+D processes are studied by nanosecond pulsed laser interaction with ultra-dense deuterium. This material has a density of 1029 cm−3 as shown in several previous publications. Laser power is <2 W (0.2 J pulses) and laser intensity is <1014 W cm−2 in the 5–10 μm wide beam waist. Particle detection by time-of-flight energy analysis with plastic scintillators is used. Metal foils in the particle flux to the detector remove slow ions, and make it possible to convert and count particles with energy well above 1 MeV. The variation of the signal of MeV particles from D+D fusion is measured as a function of laser power. At relatively weak laser-emitter interaction, the particle signal from the laser focus varies as the square of the laser power. This indicates collisions in the ultra-dense deuterium of two fast deuterons released by Coulomb explosions. During experiments with stronger laser-emitter interaction, the signal varies approximately as the sixth power of the laser power, indicating a plasma process. At least 2 × 106 particles are created by each laser pulse at the maximum intensity used. Our results indicate break-even in fusion at a laser pulse energy of 1 J with the same focusing, in approximate agreement with theoretical results for ignition conditions in ultra-dense deuterium. Radiation loss at high temperature will however require higher laser energy at break-even.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    S. Badiei, L. Holmlid, J. Phys. B: At. Mol. Opt. Phys. 39, 4191 (2006)

    ADS  Article  Google Scholar 

  2. 2.

    S. Badiei, L. Holmlid, Energ. Fuels 19, 2235 (2005)

    Article  Google Scholar 

  3. 3.

    S. Badiei, L. Holmlid, J. Phys.: Condens. Matter 16, 7017 (2004)

    ADS  Article  Google Scholar 

  4. 4.

    S. Badiei, P.U. Andersson, L. Holmlid, Int. J. Hydr. Energ. 34, 487 (2009)

    Article  Google Scholar 

  5. 5.

    S. Badiei, P.U. Andersson, L. Holmlid, Int. J. Mass Spectrom. 282, 70 (2009)

    ADS  Article  Google Scholar 

  6. 6.

    P.U. Andersson, L. Holmlid, Phys. Lett. A 373, 3067 (2009)

    ADS  Article  Google Scholar 

  7. 7.

    L. Holmlid, H. Hora, G. Miley, X. Yang, Laser Part. Beams 27, 529 (2009)

    Article  Google Scholar 

  8. 8.

    S. Badiei, P.U. Andersson, L. Holmlid, Phys. Scr. 81, 045601 (2010)

    ADS  Article  Google Scholar 

  9. 9.

    P.U. Andersson, L. Holmlid, Phys. Lett. A 374, 2856 (2010)

    ADS  Article  Google Scholar 

  10. 10.

    S. Badiei, P.U. Andersson, L. Holmlid, Appl. Phys. Lett. 96, 124103 (2010)

    ADS  Article  Google Scholar 

  11. 11.

    P.U. Andersson, B. Lönn, L. Holmlid, Rev. Sci. Instrum. 82, 013503 (2011)

    ADS  Article  Google Scholar 

  12. 12.

    S. Badiei, P.U. Andersson, L. Holmlid, Laser Part. Beams 28, 313 (2010)

    ADS  Article  Google Scholar 

  13. 13.

    S. Badiei, L. Holmlid, J. Fusion Energ. 27, 296 (2008)

    Google Scholar 

  14. 14.

    J. Nuckolls, L. Wood, A. Thiessen, G. Zimmerman, Nature 239, 139 (1972)

    ADS  Article  Google Scholar 

  15. 15.

    R. Kodama, P.A. Norreys, K. Mima, A.E. Dangor, R.G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimatsu, S.J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K.A. Tanaka, Y. Toyama, T. Yamanaka, M. Zepf, Nature 412, 798 (2001)

    ADS  Article  Google Scholar 

  16. 16.

    F. Winterberg, J. Fusion Energ. 29, 317 (2010)

    Article  Google Scholar 

  17. 17.

    F. Winterberg, Phys. Lett. A 374, 2766 (2010)

    ADS  Article  Google Scholar 

  18. 18.

    J.D. Jackson, Phys. Rev. 106, 330 (1957)

    ADS  Article  Google Scholar 

  19. 19.

    J. Zweiback, T.E. Cowan, J.H. Hartley, R. Howell, K.B. Wharton, J.K. Crane, V.P. Yanovsky, G. Hays, R.A. Smith, T. Ditmire, Phys. Plasmas 9, 3108 (2002)

    ADS  Article  Google Scholar 

  20. 20.

    J. Zweiback, R.A. Smith, T.E. Cowan, G. Hays, K.B. Wharton, V.P. Yanovsky, T. Ditmire, Phys. Rev. Letters 84, 2634 (2000)

    ADS  Article  Google Scholar 

  21. 21.

    National Nuclear Data Center, ENDF database, Brookhaven National Laboratory

  22. 22.

    National Institute of Standards and Technology NIST, Physics Laboratory, PSTAR program

  23. 23.

    G.R. Meima, P.G. Menon, Appl. Catal. A 212, 239 (2001)

    Google Scholar 

  24. 24.

    M. Muhler, R. Schlögl, G. Ertl, J. Catal. 138, 413 (1992)

    Article  Google Scholar 

  25. 25.

    R.A. Cecil, B.D. Anderson, R. Madey, Nucl. Intrum. Meth. 161, 439 (1979)

    ADS  Article  Google Scholar 

  26. 26.

    P.U. Andersson, L. Holmlid, Phys. Lett. A 375, 1344 (2011)

    ADS  Article  Google Scholar 

  27. 27.

    L. Holmlid, Int. J. Mass Spectrom. 304, 51 (2011)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Leif Holmlid.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Andersson, P.U., Holmlid, L. Fusion Generated Fast Particles by Laser Impact on Ultra-Dense Deuterium: Rapid Variation with Laser Intensity. J Fusion Energ 31, 249–256 (2012).

Download citation


  • ICF
  • Fusion
  • Ultra-dense deuterium
  • Laser
  • Break-even