Skip to main content
Log in

Zero Flux Eigenvalues of Relaxed Axisymmetric Compact Tokamaks (CT’s)

  • Brief Communication
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

Compact toroidal configuration is of simpler construction than the conventional tokamak and has important advantages due to the novel physics properties of low aspect ratio. In this paper we are developing a numerical program to study the magnetic dynamo or relaxation of CT’s characterized by arbitrary tight aspect ratio. It is shown that the numerical method (Collocation Method), used here, works quite well to calculate numerically the lowest zero flux eigenvalues μ of Taylor’s relaxed plasma state equation \( \vec{\nabla } \times \vec{B} = \mu \vec{B} \) for an axisymmetric tokamaks of circular cross section. An excellent fulfillment of the toroidal flux vanishing boundary condition \( \iint {B_{\emptyset } {\text{d}}r{\text{d}}z = 0} \) along the whole boundary for such tokamaks are achieved. Dependence of μ on the aspect ratio is also obtained. Several runs of the program for various wave numbers k showed that μ is very insensitive to the choice of k. Besides, the poloidal magnetic field topologies inside the tokamak are well represented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. http://www.apmath.spbu.ru/iaea/—Joint Meeting of the 3rd IAEA Technical Meeting on Spherical Tori and the 11th International Workshop on Spherical Torus, 3–6 October, 2005

  2. J.B. Taylor, Phys. Rev. Lett. 33, 1139 (1974)

    Article  ADS  Google Scholar 

  3. J.B. Taylor, Rev. Mod. Phys. 58, 741 (1986)

    Article  ADS  Google Scholar 

  4. L.F. Burlaga, J. Geophys. Res. 93, 7217 (1988)

    Article  ADS  Google Scholar 

  5. T.R. Detman, M. Dryer, T. Yeh, S.M. Han, S.T. Wu, D.J. McComas, J. Geophys. Res. 96, 9531 (1991)

    Article  ADS  Google Scholar 

  6. Y. Nakagawa, M.A. Raadu, D.E. Billings, D. McNamara, Solar Phys. 19, 72 (1971)

    Article  ADS  Google Scholar 

  7. M.B. Moldwin, W.J. Hughes, J. Geophys. Res. 99, 183 (1994)

    Article  ADS  Google Scholar 

  8. A. Konigl, A.R. Choudhuri, Astrophys. J. 289, 173 (1985)

    Article  ADS  Google Scholar 

  9. P.M. Bellan, J. Yee, J.F. Hansen, Earth Planets Space 53, 495 (2001)

    ADS  Google Scholar 

  10. J.B. Taylor, M.F. Turner, Nucl. Fusion 29, 1166 (1989)

    Article  Google Scholar 

  11. C.G. Gimblett, P.J. Hall, J.B. Taylor, M.F. Turner, Phys. Fluids 30, 3186 (1987)

    Article  MATH  ADS  Google Scholar 

  12. G.J. Buck, J. Appl. Phys. 36, 2231 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  13. M.F. Turner, Phys. Fluids 27, 1677 (1984)

    Article  MATH  ADS  Google Scholar 

  14. F. Cap, Sh.M. Khalil, Nucl. Fusion 29, 1166 (1989)

    Article  Google Scholar 

  15. F. Cap, Comput. Phys. Commun. 40, 99 (1986)

    Article  ADS  Google Scholar 

  16. Cap, F.: Z. Angew Math. Mech. (ZAMM) 66, 248 (1986)

  17. F. Cap, Mathematical Methods in Physics and Engineering with Mathematica, 1st edn. (CRC Press, UK, 2003)

    Book  MATH  Google Scholar 

  18. Khalil, Sh.M.: 6th Conference of Nuclear Sciences and Applications, Cairo, Egypt, 15–20 Mar 1996, p. 252

  19. Cap, F.: 4th Workshop on Plasma & Laser Physics, Cairo, Egypt, Feb 26–29 1996, International Bilateral Seminars Julich, Germany, 27, 253 (1997)

  20. Khalil, Sh.M., Altuijri, R.A.: J. Fusion Energy 28, 275 (2009)

    Google Scholar 

  21. M.J. Hole, S.R. Hudson, R.L. Dewar, J. Plasma Phys. 72, 1167 (2006)

    Article  ADS  Google Scholar 

  22. S.R. Hudson, M.J. Hole, R.L. Dewar, Phys. Plasmas 14, 052505 (2007)

    Article  ADS  Google Scholar 

  23. E. Tassi, R.J. Hastie, F. Porcelli, Phys. Plasmas 14, 092109 (2007)

    Article  ADS  Google Scholar 

  24. D. Shaikh, B. Dasgupta, G.P. Zank, Q. Hu, Phys. Plasmas 15, 012306 (2008)

    Article  ADS  Google Scholar 

  25. Z. Yoshida, S.M. Mahajan, T. Mizushima, Y. Yano, H. Saitoh, J. Morikawa, Phys. Plasmas 17, 112507 (2010)

    Article  ADS  Google Scholar 

  26. T.R. Jarboe, W.T. Hamp, G.J. Marklin, B.A. Nelson, R.G. O’Neill, A.J. Redd, P.E. Sieck, R.J. Smith, J.S. Wrobel, Phys. Rev. Lett. 97, 11503 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sh. M. Khalil.

Additional information

Sh. M. Khalil—On Leave from Plasma Physics & Nuclear Fusion Department, N.R.C., Atomic Energy Authority, Cairo, Egypt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khalil, S.M., Alomayrah, N.A. & Altuijri, R.A. Zero Flux Eigenvalues of Relaxed Axisymmetric Compact Tokamaks (CT’s). J Fusion Energ 31, 1–6 (2012). https://doi.org/10.1007/s10894-011-9434-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-011-9434-z

Keywords

Navigation