Skip to main content
Log in

Fabrication of Multi-layered Shock Wave Tube for Hydrodynamic Instability Experiment

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

In inertial confinement fusion (ICF) experiments, the growth of hydrodynamic instability occurred at the layer-to-layer interface of multilayer capsule is of the main importance to obtain ignition and high gain. In order to investigate and simulate the growth of hydrodynamic instability at “SG II”laser facility, we designed and fabricated a multi-layered shock wave tube (MSWT) in this article. The MSWT consisted of four functional units: planar polystyrene (CH) film, Al film with perturbation patterns, polyimide (PI) plastic and cylindrical carbonized-resorcinol–formaldehyde (CRF) aerogel, which were assembled into a cylindrical CH tube. The design, preparation process and assembly process of MSWT were detailed described. The assembly deviations and packaging material were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T.J.B. Collins et al., Phys. Plasmas 14, 056308 (2007)

    Article  ADS  Google Scholar 

  2. J.A. Marozas et al., Phys. Plasmas 13, 056311 (2006)

    Article  ADS  Google Scholar 

  3. P.P. Amendt, C. Cerjan, A. Hamza et al., Assessing the prospects for achieving double-shell ignition on the National Ignition Facility using vacuum hohlraums. Phys. Plasmas 14, 056312 (2007)

    Article  ADS  Google Scholar 

  4. R. Ishizaki, K. Nishihara, J.G. Wouchuk, et al., Rippled shock propagation and hydrodynamic perturbation growth in laser implosion. J. Mater. Process. Technol. 85, 34–38 (1999)

    Google Scholar 

  5. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Clarendon, Oxford, 1961)

    MATH  Google Scholar 

  6. R.D. Richtmyer, Commun. Pure Appl. Math. 13, 297 (1960)

    Article  MathSciNet  Google Scholar 

  7. B. Zhou, J. Wang, J. Shen et al., Surface perturbation target for the Rayleigh–Taylor instability in inertial confinement fusion experiments. J. Vac. Sci. Technol. A 17(6), 3516–3520 (1999)

    Google Scholar 

  8. J. Kilkenny, K. Shillito, J. Kaae, et al., Inertial confinement fusion targets. General Atomics report, 2005

  9. N. Metzler, A.L. Velikovich, A.J. Schmitt et al., Laser imprint reduction with a short shaping laser pulse incident upon a foam-plastic target. Phys. Plasmas 9(12), 5050–5058 (2002)

    Article  ADS  Google Scholar 

  10. M. Shukla, Y. Kashyap, P.S. Sarkar et al., Laser induced shock pressure multiplication in multilayer thin foil targets. Nucl. Fusion 46, 419–431 (2006)

    Article  ADS  Google Scholar 

  11. C.C. Kuranz, R.P. Drake, M.J. Grosskopf et al., Three-dimensional blast-wave-driven Rayleigh-Taylor instability and the effects of long-wavelength modes. Phys. Plasmas 16, 056310 (2009)

    Article  ADS  Google Scholar 

  12. J. Guo, F. Sizu, D. Jiaqin, et al. Experimental data processing on laser drive Rayleigh-Taylor instability. Chin. J. Lasers, 37(1) (2010)

  13. D. Jiaqin, F. Sizu, X. Jun, et al. Experimental research on pinhole assisted point projection diagnostic scheme. Acta Optica Sinica 28(3) (2008)

  14. Q. Sun, Z. Bin, H. Yao-dong et al., Study on figure transfer process and the preparation of surface perturbation target. At. Energ. Sci. Technol. 36(4/5), 327–330 (2002)

    Google Scholar 

  15. Q. Sun, Z. Bin, Y. Fan et al., Aluminium target with deep amplitude modulation fabricated by chemical wet etching process. High Power Laser Particle Beams 17(9), 1382–1386 (2005)

    Google Scholar 

  16. B. Hua Zhou, S.M. Mahdavian, Experimental and theoretical analyses of cutting nonmetallic materials by low power CO2-laser. J. Mater. Process. Technol. 146, 188–192 (2004)

    Google Scholar 

  17. A. Nikroo, K.C. Chen, M.L. Hoppe et al., Progress toward fabrication of graded doped beryllium and CH capsules for the National Ignition Facility. Phys. Plasmas 13, 056302 (2006)

    Article  ADS  Google Scholar 

  18. R.W. Margevicius, Fusion Sci. Technol. 41, 286 (2002)

    Google Scholar 

  19. M.M. Marinak, S.G. Glendinning, R.J. Wallace et al., Nova indirect drive Rayleigh–Taylor experiments with beryllium. Phys. Plasmas 9, 3567 (2002)

    Article  ADS  Google Scholar 

  20. J.A. Cobble, T.E. Tierney, N.M. Hoffman et al., Late-time radiography of beryllium ignition-target ablators in long-pulse gas-filled hohlraums. Phys. Plasmas 13, 056304 (2006)

    Article  ADS  Google Scholar 

  21. G.A. Kyrala, M.M. Balkey, C.W. Barnes, et al. Target fabrication: a view from the users. Fusion Sci. Technol. 45 (2004)

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (50802064, 50752001 and 11074189), New Century Excellent Talents in University of China (NECT-08-0405), National Science and Technology Support Program (2009BAC62B02) and Shanghai Committee of Science and Technology (0952nm00900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, X., Zhou, B., Xu, X. et al. Fabrication of Multi-layered Shock Wave Tube for Hydrodynamic Instability Experiment. J Fusion Energ 30, 509–515 (2011). https://doi.org/10.1007/s10894-011-9410-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-011-9410-7

Keywords

Navigation