Skip to main content
Log in

Neutron Emission Spectra of Some Structural Fusion Materials at 26.8 and 45.2 MeV Alpha Incident Energies

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

In this study, neutron-emission spectra produced by (α,xn) reactions for some structural fusion materials such as 27Al, 53Cr, 56Fe and 58,60,62Ni have been investigated. Hybrid model, geometry dependent hybrid model and full exciton model have been used to calculate the pre-equilibrium neutron-emission spectra. For the reaction equilibrium component, Weisskopf–Ewing model calculations have been preferred. The mean free path parameter’s effect for (α,xn) neutron-emission spectra has been examined. The obtained results have been discussed and compared with the available experimental data and found agreement with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Y. Wu, Plasma Sci. Technol. 3(6), 1085 (2001)

    Article  ADS  Google Scholar 

  2. Y. Chen, Y. Wu, Fusion Eng. Des. 49 & 50, 507 (2000)

    Article  Google Scholar 

  3. Y. Wu et al., Fusion Eng. Des. 51 & 52, 395 (2000)

    Article  Google Scholar 

  4. Y. Wu, in International Symposium on Fusion Nuclear Technology, San Diego, USA, 7–13 April 2002

  5. S.J. Zinkle et al., J. Nucl. Mater. 258–263, 205 (1998)

    Article  Google Scholar 

  6. D.L. Smith et al., Fusion Eng. Des. 41, 7 (1998)

    Article  Google Scholar 

  7. H. Matsui et al., J. Nucl. Mater. 233–237, 92 (1996)

    Article  Google Scholar 

  8. W.R. Johnson, J.P. Smith, J. Nucl. Mater. 258–263, 1425 (1998)

    Article  Google Scholar 

  9. N.P. Taylor, C.B.A. Forty, J. Nucl. Mater. 283–287, 28 (2000)

    Article  Google Scholar 

  10. E.T. Cheng, J. Nucl. Mater. 258–263, 1767 (1998)

    Article  Google Scholar 

  11. Q. Huang et al., J. Nucl. Mater. 307–311, 1031 (2002)

    Article  Google Scholar 

  12. P.M. Raole et al., Trans. IIM 62, 2–105 (2009)

    Google Scholar 

  13. M. Victoria et al., Nucl. Fusion 41(8), 1047 (2001)

    Article  ADS  Google Scholar 

  14. K. Ehrlich, Philos. Trans. R. Soc. Lond. A 357, 595 (1999)

    Article  ADS  Google Scholar 

  15. E.T. Cheng, J. Nucl. Sci. Technol. 2, 1127 (2002)

    ADS  Google Scholar 

  16. D.R. Harries, Ferritic martensitic steels for use in near term and commercial fusion reactors. Paper presented at Top. Conf. on Ferritic Alloys for Use in Nuclear Energy Technologies, Snowbird, Utah, 1983

  17. Y. Han et al., Nucl. Instrum. Methods Phys. Res. B 239, 314 (2005)

    Article  ADS  Google Scholar 

  18. N.L. Singh et al., Can. J. Phys. 76, 10–785 (1998)

    Google Scholar 

  19. S.J. Iwata, J. Physical Soc. Japan 17, 1323 (1962)

    Article  ADS  Google Scholar 

  20. F. Tárkányi et al., Nucl. Instrum. Methods Phys. Res. B 207, 381 (2003)

    Article  Google Scholar 

  21. T. Nishio et al., J. Nucl. Sci. Technol. 2, 955 (2002)

    Google Scholar 

  22. H.A. Yalım et al., J. Fusion Energ. 29, 1–55 (2010)

    Article  Google Scholar 

  23. E. Tel, Phys. Rev. C 75, 034614 (2007)

    Article  ADS  Google Scholar 

  24. M. Blann, Phys. Rev. Lett. 27, 337 (1971)

    Article  ADS  Google Scholar 

  25. M. Blann, Annu. Rev. Nucl. Sci. 25, 123 (1975)

    Article  ADS  Google Scholar 

  26. C.K. Cline, M. Blann, Nucl. Phys. A 172, 225 (1971)

    Article  ADS  Google Scholar 

  27. J.J. Griffin, Phys. Rev. Lett. 17, 478 (1966)

    Article  ADS  Google Scholar 

  28. G.D. Harp et al., Phys. Rev. 165, 1166 (1968)

    Article  ADS  Google Scholar 

  29. G.D. Harp, J.M. Miller, Phys. Rev. C 3, 1847 (1971)

    Article  ADS  Google Scholar 

  30. M. Ismail, Pramana 32(5), 605 (1989)

    Article  ADS  Google Scholar 

  31. J.S. Zhang, X.J. Yang, Z. Phys. A 329(1), 69 (1988)

    ADS  Google Scholar 

  32. W. Dilg et al., Nucl. Phys. A 217(2), 269 (1973)

    Article  ADS  Google Scholar 

  33. F.C. Williams, Nucl. Phys. A 166(2), 231 (1971)

    Article  ADS  Google Scholar 

  34. D. Wilmore, P.E. Hodgson, Nucl. Phys. 55, 673 (1964)

    Article  Google Scholar 

  35. F.D. Becchetti, G.W. Greenlees, Phys. Rev. 182, 4–1190 (1969)

    Article  Google Scholar 

  36. J.R. Huizenga, G. Igo, Nucl. Phys. 29, 462 (1962)

    Article  Google Scholar 

  37. V.F. Weisskopf, D.H. Ewing, Phys. Rev. 57, 472 (1940)

    Article  ADS  Google Scholar 

  38. K.K. Gudima, S.G. Mashnik, V.D. Toneev, Nucl. Phys. A 401, 329 (1983)

    Article  ADS  Google Scholar 

  39. M. Blann, H.K. Vonach, Phys. Rev. C 28, 1475 (1983)

    Article  ADS  Google Scholar 

  40. H. Feshbach, A. Kerman, S. Koonin, Ann. Phys. (NY) 125, 429 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  41. T. Tamura, T. Udagawa, H. Lenske, Phys. Rev. C 26, 379 (1982)

    Article  ADS  Google Scholar 

  42. M. Blann, J. Bisplinghoff, CODE ALICE/LIVERMORE 82 UCID-19614 (1982)

  43. M. Blann, A. Mignerey, W. Scobel, Nukleonika 21, 335 (1976)

    Google Scholar 

  44. C.K. Cline, Nucl. Phys. A 210, 590, 32 (1973)

  45. C.K. Cline, Z. Phys. A 287, 319 (1978)

    Article  Google Scholar 

  46. M. Blann, A. Mignerey, Nucl. Phys. A 186, 245 (1972)

    Article  ADS  Google Scholar 

  47. H. Machner, Z. Phys. A 302, 125 (1981)

    Article  ADS  Google Scholar 

  48. C.H.M. Broeders, A.Y. Konobeyev, Y.A. Korovin, V.P. Lunev, M. Blann, ALICE/ASH—pre-compound and evaporation model code system for calculation of excitation functions, energy and angular distributions of emitted particles in nuclear reactions at intermediate energies, FZK 7183, May 2006, http://bibliothek.fzk.de/zb/berichte/FZKA7183.pdf

  49. A.V. Ignatyuk, K.K. Istekov, G.N. Smirenkin, Yad. Fiz. 29, 875 (1979) [Sov. J. Nucl. Phys. 29, 450 (1979)]

    Google Scholar 

  50. M. Blann, Code ALICE-91, PSR-146, Statistical Model Code System with Fission Competition, Oak Ridge National Laboratory, RSICC Peripheral Shielding Routine Collection, Lawrence Livermore National Laboratory, Livermore, California and IAEA

  51. R. Capote et al., Final Report on Research Contract 5472/RB, INDC(CUB)-004 (Higher Institute of Nuclear Science and Technology, Cuba), Translated by the IAEA on March 1991 (PCROSS program code)

  52. E. Tel et al., Mod. Phys. Lett. A 19(21), 1597 (2004)

    Article  ADS  Google Scholar 

  53. Brookhaven National Laboratory, National Nuclear Data Center, EXFOR/CSISRS (Experimental Nuclear Reaction Data File). Database version of January 01, 2010, http://www.nndc.bnl.gov/exfor/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kaplan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaplan, A., Aydin, A., Tel, E. et al. Neutron Emission Spectra of Some Structural Fusion Materials at 26.8 and 45.2 MeV Alpha Incident Energies. J Fusion Energ 29, 353–359 (2010). https://doi.org/10.1007/s10894-010-9287-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-010-9287-x

Keywords

Navigation