Investigation of Deuteron Emission Spectra at 62 MeV Proton Incident Energy

Abstract

In this study, deuteron emission cross sections for 27Al, 54,56Fe, 89Y, 120Sn, 197Au, 208Pb and 209Bi target nuclei have been calculated at 62 MeV proton incident energy. In these calculations, the pre-equilibrium and equilibrium effects have been investigated. The pre-equilibrium calculations involve the geometry dependent hybrid model and hybrid model. Equilibrium effects are calculated according to the Weisskopf–Ewing model. The calculated results are compared with the experimental data taken from the literature and found to be in good agreement.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    P.G. Young et al., Los Alamos National Laboratory access report LA-11753-MS, 1990

  2. 2.

    M.B. Chadwick et al., Nucl. Sci. Eng. 131, 293 (1999)

    Google Scholar 

  3. 3.

    M. Harada et al., J. Nucl. Sci. Tech. 2, 393–396 (2002)

    Google Scholar 

  4. 4.

    C.H.M. Broeders et al., J. Nuc. Sci. Tech. 44(7), 933–937 (2007)

    Article  Google Scholar 

  5. 5.

    A. Aydin et al., App. Rad. Isot. 65(3), 365–370 (2007)

    Article  Google Scholar 

  6. 6.

    E.G. Aydin et al., Kerntechnik 73(4), 184 (2008)

    MathSciNet  Google Scholar 

  7. 7.

    A. Aydin et al., Ann. Nucl. Energ. 36(9), 1307–1312 (2009)

    Article  Google Scholar 

  8. 8.

    A. Kaplan et al., Pramana J. Phys. 72(2), 343–353 (2009)

    Article  ADS  Google Scholar 

  9. 9.

    C. Rubbia et al., CERN/AT/95-44 (ET), 1995

  10. 10.

    A. Boudard et al., Nucl. Phys. A 663, 1061–1064 (2000)

    Article  ADS  Google Scholar 

  11. 11.

    C.H.M. Broeders, I. Broeders, Nucl. Eng. Des. 202(2), 209–218 (2000)

    Article  Google Scholar 

  12. 12.

    I. Demirkol et al., Nucl. Sci. Eng. 147(1), 83–91 (2004)

    Google Scholar 

  13. 13.

    A. Kaplan et al., Appl. Radiat. Isot. 67(4), 570–576 (2009)

    Article  Google Scholar 

  14. 14.

    B. Şarer et al., Nucl. Sci. Eng. 153(2), 192–199 (2006)

    Google Scholar 

  15. 15.

    H. Yapıcı et al., Ann. Nucl. Energ. 34(5), 374–384 (2007)

    Article  Google Scholar 

  16. 16.

    S. Şahin et al., Fusion Techn 10, 84 (1986)

    Google Scholar 

  17. 17.

    M. Übeyli, E. Tel, J. Fusion Energ. 22, 2 (2003)

    Google Scholar 

  18. 18.

    E. Raeymackers et al., Nucl. Phys. A 726, 210–230 (2003)

    Article  ADS  Google Scholar 

  19. 19.

    M. Harada et al., J. Nucl. Sci. Tech. 34, 116 (1997)

    Article  Google Scholar 

  20. 20.

    E. Tel et al., Phys. Rev. C 75, 034614 (2007)

    Article  ADS  Google Scholar 

  21. 21.

    E. Tel et al., J. Fusion Energ. 27(3), 188–194 (2008)

    Article  MathSciNet  Google Scholar 

  22. 22.

    A. Aydin et al., J. Fusion Energ. 27(4), 308–313 (2008)

    Article  MathSciNet  Google Scholar 

  23. 23.

    A. Aydin et al., J. Fusion Energ. 27(4), 314–320 (2008)

    Article  MathSciNet  Google Scholar 

  24. 24.

    M. Blann, ALICE-91, Report PSR-146, LLNL/IAEA/NEA Data Bank, France 1991

  25. 25.

    C.H.M. Broeders et al., ALICE/ASH—pre-compound and evaporation model code system for calculation of excitation functions, energy and angular distributions of emitted particles in nuclear reactions at intermediate energies, FZK 7183. http://bibliothek.fzk.de/zb/berichte/FZKA7183.pdf. May 2006

  26. 26.

    R. Capote et al., PCROSS code, final report on research contract 5472/RB, INDC(CUB)-004 (Higher Institute of Nuclear Science and Technology, Cuba). Translated by the IAEA on Mar 1991

  27. 27.

    H.A. Yalim et al., J. Fusion Energ. 29(1), 55–61 (2010)

    Article  Google Scholar 

  28. 28.

    V.F. Weisskopf, D.H. Ewing, Phys. Rev. 57, 472 (1940)

    Article  ADS  Google Scholar 

  29. 29.

    J.J. Griffin, Phys. Rev. Lett. 17, 478 (1966)

    Article  ADS  Google Scholar 

  30. 30.

    M. Blann, Phys. Rev. Lett. 27, 337 (1971)

    Article  ADS  Google Scholar 

  31. 31.

    M. Blann, Ann. Rev. Nucl. Sci. 25, 123 (1975)

    Article  ADS  Google Scholar 

  32. 32.

    M. Blann, J. Bisplinghoff, Code Alice/Livermore Lawrence Laboratory 82 UCID-19614, 1982

  33. 33.

    M. Blann et al., Nukleonika 21, 335 (1976)

    Google Scholar 

  34. 34.

    M. Blann, H.K. Vonach, Phys. Rev. C 28, 1475–1496 (1983)

    Article  ADS  Google Scholar 

  35. 35.

    EXFOR/CSISRS, National Nuclear Data Center. http://www.nndc.bnl.gov/exfor/exfor00.htm

Download references

Acknowledgments

This work has been supported by State Planning Organization of Turkey project DPT-2006K #120470. The authors would like to thank C.H.M. Broeders for the cooperation on ALICE/ASH code.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Aydin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aydin, A., Türeci, G., Tel, E. et al. Investigation of Deuteron Emission Spectra at 62 MeV Proton Incident Energy. J Fusion Energ 29, 327–331 (2010). https://doi.org/10.1007/s10894-010-9283-1

Download citation

Keywords

  • Deuteron emission spectra
  • Pre-equilibrium reactions
  • Geometry dependent hybrid model
  • Hybrid model