Numerical and Statistical Analysis of FR Spent Fuel Transmutation in a Thorium Fusion Breeder

Abstract

In this study, a numerical analysis and an analysis of variance (ANOVA) are applied to find the best suitable neutronic parameters for the performance analysis in a thorium fusion rector. The numerical and ANOVA approach are employed to investigate the neutronic characteristics of a fusion reactor using ThO2 90% + FR spent fuel 10% fuel mixtures. Three different neutronic parameters for the ANOVA and numerical approach, namely, moderator/fuel volume fractions (Vm/Vf), plasma chamber dimensions (PCD) and neutron wall loading (NWLs) as time dependent are selected for neutronic performance characteristics including tritium breeding ratio (TBR), multiplication factor (M), total fission rate (Σf), 232Th(n,γ) reaction, burn up and/or transmutation (B/T) and fissile fuel breeding (FFBR). Moreover, effects of the NWLs, Vm/Vf fractions and PCD in the B/T of FR spent fuel mixed thorium are investigated. Numerical and statistics approach results are evaluated for TBR, M, Σf fission rate, 232Th(n,γ) reaction, B/T and FFBR.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    R.W. Conn et al., Nucl. Technol. 49, 458 (1980)

    Google Scholar 

  2. 2.

    R.W. Moir, The fusion breeder, submitted to the National Science Foundation Policy Workshop, Washington, DC, March 4–5, 1982 (Lawrence Livermore Laboratory, CA, UCRL-87290, 1982)

  3. 3.

    D.H. Berwald et al., Fission Suppressed Hybrid Reactor Fusion Breeder (Lawrence Livermore National Laboratory, UCID-19327, 1982)

  4. 4.

    E. Greenspan, in Fusion-Fission Hybrid Reactors, ed. by J. Lewins, M. Becker. Advances in Science and Technology, vol. 16(Plenum Press, 1984), p. 289

  5. 5.

    S. Şahin, T. Al-Kusayer, Kerntechnik 47, 259–266 (1985)

    Google Scholar 

  6. 6.

    S. Şahin et al., Fusion Technol. 10, 84–99 (1986)

    Google Scholar 

  7. 7.

    H.M. Şahin, Ann. Nucl. Energy 34, 861–870 (2007)

    Article  Google Scholar 

  8. 8.

    S. Ünalan, Fusion Eng. Des. 38, 393 (1998)

    Article  Google Scholar 

  9. 9.

    F.M. Feng, Fusion Eng. Des. 51–52, 505–513 (2000)

    Article  Google Scholar 

  10. 10.

    K.M. Feng, G. Hu, Fusion Eng. Des. 41, 449–454 (1998)

    Article  Google Scholar 

  11. 11.

    S. Şahin, H. Yapıcı, Ann. Nucl. Energy 25(16), 1317 (1998)

    Article  Google Scholar 

  12. 12.

    S. Sahin et al., Kerntechnik 59(6), 243–277 (1994)

    Google Scholar 

  13. 13.

    M. Übeyli, A. Acır, Ş. Yalçın, Appl. Energy 85(9), 855–866 (2008)

    Article  Google Scholar 

  14. 14.

    H. Yapıcı, Ann. Nucl. Energy 30, 413–436 (2003)

    Article  Google Scholar 

  15. 15.

    S. Şahin et al., Fusion Eng. Des. 47, 9 (1999)

    Article  Google Scholar 

  16. 16.

    S. Şahin, H. Yapıcı, Fusion Technol. 16, 331 (1989)

    Google Scholar 

  17. 17.

    S. Ünalan, Fusion Technol. 33, 398 (1998)

    Google Scholar 

  18. 18.

    S. Şahin, M. Übeyli, Ann. Nucl. Energy 31, 871–890 (2004)

    Article  Google Scholar 

  19. 19.

    S. Şahin et al., Energy Convers. Manage. 43(6), 799–815 (2002)

  20. 20.

    A. Acır, M. Übeyli, J. Fusion Energy 26(3), 293–298 (2007)

    Article  Google Scholar 

  21. 21.

    Ismail, P.H. Liem et al., Prog. Nucl. Energy 50(2–6), 290–294 (2008)

  22. 22.

    T. Ikegami, Prog. Nucl. Energy 50(2–6), 206–211 (2008)

    Article  Google Scholar 

  23. 23.

    J. Yamashita et al., J. Nucl. Sci. Technol. 44(3), 257–263 (2007)

    Article  MathSciNet  Google Scholar 

  24. 24.

    J. Yamashita et al., Energy Convers. Manage. 47(17), 2801–2809 (2006)

    Article  MathSciNet  Google Scholar 

  25. 25.

    N.M. Greene, L.M. Petrie, XSDRNPM, A One-Dimensional Discrete-Ordinates Code for Transport Analysis, NUREG/CR-0200, Revision 7, vol. 2, Section F3, ORNL/NUREG/CSD-2/V2/R7 (Oak Ridge National Laboratory, 2004)

  26. 26.

    W.C. Jordan, S.M. Bowman, Scale Cross-Section Libraries, NUREG/CR-0200, Revision 7, vol. 3, Section M4, ORNL/NUREG/CSD-2/V3/R7 (Oak Ridge National Laboratory, 2004)

  27. 27.

    N.F. Landers, L.M. Petrie, D.F. Hollenbach, CSAS, Control Module for Enhanced Criticality Safety Analysis Sequences, NUREG/CR-0200, Revision 7, vol. 1, Section C4, ORNL/NUREG/CSD-2/V1/R7 (Oak Ridge National Laboratory, 2004)

  28. 28.

    N.M. Greene, BONAMI, Resonance Self-Shielding by the Bondarenko Method, NUREG/CR-0200, Revision 7, vol. 2, Section F1, ORNL/NUREG/CSD-2/V2/R7 (Oak Ridge National Laboratory, 2004)

  29. 29.

    N.M. Greene, L.M. Petrie, R.M. Westfall, NITAWL-III, Scale System Module For Performing Resonance Shielding and Working Library Production, NUREG/CR-0200, Revision 7, vol. 2, Section F2, ORNL/NUREG/CSD-2/V2/R7 (Oak Ridge National Laboratory, 2004)

  30. 30.

    A. Acır, J. Fusion Energy 27, 301–307 (2008)

    Article  Google Scholar 

  31. 31.

    S. Ünalan et al., Energy Convers. Manage. 44, 2567 (2003)

    Article  Google Scholar 

  32. 32.

    K. Yıldız, J. Polytech. 7, 141–148 (2004) (in Turkish)

    Google Scholar 

  33. 33.

    S.O. Akansu, J. Chinese Inst. Eng. 30(1), 1–10 (2007)

    Google Scholar 

  34. 34.

    S. Şahin, H. Yapıcı, S. Ünalan, ERDEMLI, A Computer Program to Process ANISN Output Data (Gazi University, Ankara, Turkey, 1991)

    Google Scholar 

  35. 35.

    M.A. Abdou, the APEX Team, Fusion Eng. Des. 45, 145–167 (1999)

  36. 36.

    M.Z. Youssef, C. Wong, Fusion Eng. Des. 49–50, 727–734 (2000)

    Article  Google Scholar 

  37. 37.

    R.P. Ross, Taguchi Techniques for Quality Engineering—Loss Function, Orthogonal Experiments, Parameter and Tolerance Design, 1st edn. ISBN 0-07-053866-2 (1988)

  38. 38.

    C.K. Toh, Mater. Des. 25, 41–50 (2004)

    Article  Google Scholar 

  39. 39.

    Y. Tzeng, J. Mater. Process. Technol. 203, 355–364 (2008)

    Article  Google Scholar 

  40. 40.

    V.N. Gaitonde et al., J. Mater. Process. Technol. 204, 459–464 (2008)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Adem Acır.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Acır, A. Numerical and Statistical Analysis of FR Spent Fuel Transmutation in a Thorium Fusion Breeder. J Fusion Energ 28, 258–267 (2009). https://doi.org/10.1007/s10894-008-9163-0

Download citation

Keywords

  • ANOVA statistical approach
  • FR spent fuel
  • Thorium
  • Optimization