Skip to main content
Log in

A Review on the Potential Use of Austenitic Stainless Steels in Nuclear Fusion Reactors

  • Original Paper
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

Various engineering materials; austenitic stainless steels, ferritic/martensitic steels, vanadium alloys, refractory metals and composites have been suggested as candidate structural materials for nuclear fusion reactors. Among these structural materials, austenitic steels have an advantage of extensive technological database and lower cost compared to other non-ferrous candidates. Furthermore, they have also advantages of very good mechanical properties and fission operation experience. Moreover, modified austenitic stainless (Ni and Mo free) have relatively low residual radioactivity. Nevertheless, they can’t withstand high neutron wall load which is required to get high power density in fusion reactors. On the other hand, a protective flowing liquid wall between plasma and solid first wall in these reactors can eliminate this restriction. This study presents an overview of austenitic stainless steels considered to be used in fusion reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Van der Schaaf, Fusion Eng. Des. 51–52, 43 (2000)

    Article  Google Scholar 

  2. M.A. Abdou, On the exploration of innovative concepts for fusion chamber technology, APEX Interim Report (Overview), UCLA-ENG-99-206, UCLA-FNT-107. (University of California, Los Angeles, CA, 1999)

  3. S.H. Avner, Introduction to Physical Metallurgy. (McGraw-Hill Inc., 1974)

  4. A.A.F. Tavassoli, Fusion Eng. Des. 29, 371 (1995)

    Article  Google Scholar 

  5. H. Takahashi, Y. Shindo, H. Kinoshita, T. et al., J. Nucl. Mater. 258–263, 1644 (1998)

  6. S. Usami, T. Mori, Cryogenics 40, 117 (2000)

    Article  ADS  Google Scholar 

  7. V.A. Petrov, V.P. Ulin, B.T. Timofev, Int. J. Pressure Vessel Piping 70, 85 (1997)

    Article  Google Scholar 

  8. A.A.F. Tavassoli, F. Toubol, J. Nucl. Mater. 233–237, 51 (1996)

    Article  Google Scholar 

  9. J.E. Pawell, A.F. Rowcliffe, D.J. Alexander et al., J. Nucl. Mater. 233–237, 202 (1996)

    Article  Google Scholar 

  10. J.E. Pawell, A.F. Rowcliffe, G.E. Lucas et al., J. Nucl. Mater. 239, 126 (1996)

    Article  ADS  Google Scholar 

  11. S. Jitsukawa, P.J. Maziasz, T. Ishiyama et al., J. Nucl. Mater. 191–194, 771 (1992)

    Article  Google Scholar 

  12. G. Piatti, P. Schiller, J. Nucl. Mater. 141–143, 417 (1986)

    Article  Google Scholar 

  13. S.J. Zinkle, P.J. Maziasz, R.E. Stoller, J. Nucl. Mater. 206, 266 (1993)

    Article  ADS  Google Scholar 

  14. P.J. Maziasz, J. Nucl. Mater. 205, 118 (1993)

    Article  ADS  Google Scholar 

  15. M.G. Horsten, M.I. DeVries, J. Nucl. Mater. 212, 514 (1994)

    Article  ADS  Google Scholar 

  16. J.-L. Puzzolante, M. Scibetta, R. Chaouadi et al., J. Nucl. Mater. 283–287, 428 (2000)

    Article  Google Scholar 

  17. B.S. Rodchebkov, Y.S. Strebkov, G.M. Kalinin et al., Fusion Eng. Des. 49–50, 657 (2000)

    Article  Google Scholar 

  18. E.H. Lee, L.K. Mansur, J. Nucl. Mater. 278, 1 (2000)

    Article  ADS  Google Scholar 

  19. E.H. Lee, L.K. Mansur, J. Nucl. Mater. 278, 11 (2000)

    Article  ADS  Google Scholar 

  20. E.H. Lee, L.K. Mansur, J. Nucl. Mater. 278, 20 (2000)

    Article  ADS  Google Scholar 

  21. M.L. Grossbeck, J.A. Horak, J. Nucl. Mater. 155–157, 1001 (1988)

    Article  Google Scholar 

  22. P.J. Maziasz, J. Nucl. Mater. 85/86, 713 (1979)

    Article  ADS  Google Scholar 

  23. M.L. Grossbeck, P.J. Maziasz, J. Nucl. Mater. 85/86, 883 (1979)

    Article  Google Scholar 

  24. M.L. Grossbeck, L.T. Gibson, S. Jitsukawa, J. Nucl. Mater. 233–237, 148 (1996)

    Article  Google Scholar 

  25. M. Marchionni, D.J. Boerman, J. Nucl. Mater. 228, 129 (1996)

    Article  ADS  Google Scholar 

  26. B. Van der Schaaf, K. Ehrlich, P. Fenic et al., Fusion Eng. Des. 48, 499 (2000)

    Article  Google Scholar 

  27. E.V. Van Osch, M.G. Horsten, M.I. De Vries, J. Nucl. Mater. 258–263, 301–307 (1998)

    Article  Google Scholar 

  28. Y. Suzuki, T. Saida, F. Kudough, J. Nucl. Mater. 258–263, 1687 (1998)

    Article  Google Scholar 

  29. O. Grégoire, J. Ladriére, J. Nucl. Mater. 298, 309 (2001)

    Article  ADS  Google Scholar 

  30. J. Toribio, Fusion Eng. Des. 41, 85 (1998)

    Article  Google Scholar 

  31. A.F. Rowcliffe, S.J. Zinkle, J.F. Stubbins et al., J. Nucl. Mater. 258–263, 183 (1998)

    Article  Google Scholar 

  32. R.W. Clark, A.S. Kumar, J. Nucl. Mater. 155–157, 845 (1988)

    Article  Google Scholar 

  33. W. Daenner, J. Raeder, J. Nucl. Mater. 85/86, 147 (1979)

    Article  ADS  Google Scholar 

  34. G.J. Butterworth, O.N. Jarvis, J. Nucl. Mater. 122/123, 982 (1984)

    Article  Google Scholar 

  35. R.E. Stoller, G.R. Odette, J. Nucl. Mater. 141–143, 647 (1986)

    Article  Google Scholar 

  36. G. Kohse, O.K. Harling, J. Nucl. Mater. 122/123, 359 (1984)

    Article  Google Scholar 

  37. G.E. Lucas, M. Billone, J.E. Pawel, M.L. Hamilton, J. Nucl. Mater. 233–237, 207 (1996)

    Article  Google Scholar 

  38. Y. Ikeda, F. Maekawa, M. Wada et al., Fusion Eng. Des. 42, 289 (1998)

    Article  Google Scholar 

  39. H. Yanagihara, Y. Yamauchi, T. Hino et al., J. Nucl. Mater. 241–243, 1098 (1997)

    Google Scholar 

  40. K. Miyahara, D.-S. Bae, T. Kimura et al., J. Nucl. Mater. 226, 92 (1995)

    Article  ADS  Google Scholar 

  41. M. Merola, M. Zucchetti, Fusion Technol. 21, 129 (1992)

    Google Scholar 

  42. N. Simon, A. Terlain, T. Flament, Corrosion Sci. 43, 1041 (2001)

    Article  Google Scholar 

  43. J.R. Keiser, J.H. DeVan, E.J. Lawrence, J. Nucl. Mater. 85/86, 295 (1979)

    Article  Google Scholar 

  44. H.R. Konvicka, P. Reithmayr, J. Nucl. Mater. 103/104, 645 (1981)

    Article  Google Scholar 

  45. G.A. Whitlow, W.L. Wilson, W.E. Ray et al., J. Nucl. Mater. 85/86, 283 (1979)

    Article  Google Scholar 

  46. P. Fenici, V. Coen, J. Arrighi, H. Kolbe et al., J. Nucl. Mater. 85/86, 277 (1979)

    Article  Google Scholar 

  47. P.F. Tortorelli, J.H. De Van, J. Nucl. Mater. 85/86, 289 (1979)

    Article  Google Scholar 

  48. O.K. Chopra, D.L. Smith, J. Nucl. Mater. 122/123, 1213 (1984)

    Article  ADS  Google Scholar 

  49. O.K. Chopra, D.L. Smith, J. Nucl. Mater. 103/104, 651 (1981)

    Article  ADS  Google Scholar 

  50. B. Stellwag, Corrosion Sci. 40(2), 337 (1998)

    Article  Google Scholar 

  51. S.L. Percival, J.S. Knapp, R.G.J. Edyvean et al., Water Res. 32(7), 2187 (1998)

    Article  Google Scholar 

  52. A.B. Tsepelev, Fusion Eng. Des. 70, 79 (2004)

    Article  Google Scholar 

  53. Ph. Deloffre, A. Terlain, A. Alemany et al., Fusion Eng. Des. 69, 391 (2003)

    Article  Google Scholar 

  54. M. Onozuka, T. Saida, S. Hirai et al., J. Nucl. Mater. 255, 128 (1998)

    Article  ADS  Google Scholar 

  55. M.L. Grossbeck, T. Sawai, S. Jitsukawa, L.T. Gibson, Fusion Reactor Materials Semiannual Progress Report for Period Ending March 31, 1989 (Office of Fusion Energy, DOE/ER-0313/6, 1989), p. 259

  56. J.E. Pawell, M.L. Grossbeck, A.F. Rowcliffe, K. Shiba, Fusion Materials Semiannual Progress Report for Period Ending September 30, 1994 (Office of Fusion Energy, DOE/ER-0313/17, 1994), p. 125

  57. M.G. Horsten, M.I. de Vries, in Effects of Radiation on Materials, 17th International symposium, ASTM STP 1270, eds. by D.S. Gelles, R.K. Nanstad, A.S. Kumar, E.A. Little (ASTM, Philadelphia, PA, 1996), p. 919

  58. M.G. Horsten, J. Van Hoepen, M.I. de Vries, Tensile tests on plate and electron-beam welded type 316L(N) material (Netherlands Energy Research Foundation ECN, ECN-CX-93-112, 1993)

  59. B. Van der Schaaf, M. Grossbeck, H. Scheurer, Oak Ridge Test Matrix No. 5B and 5C HFR and HFIR Irradiations and Post-Irradiation Tensile Tests in Support of Fusion Reactor First Wall Material Development, Nuclear Science and Technology (Commission of the european Communities, Luxembourg, EUR 10659 EN, 1986)

  60. F.W. Wiffen, P.J. Maziasz, J. Nucl. Mater. 103/104, 821 (1981)

    Article  Google Scholar 

  61. R. Kallstrom, B. Josefsson, Y. Haag, Results from tensile testing of 316L plate and weld material (Studsvik Material AB, STUDSVIK/M-93/45, PSM 1-1, 1993)

  62. H.R. Higgy, F.H. Hammad, J. Nucl. Mater. 55, 177 (1975)

    Article  ADS  Google Scholar 

  63. E.E. Bloom, W.R. Martin, J.O. Stiegler et al., J. Nucl. Mater. 22, 68 (1967)

    Article  ADS  Google Scholar 

  64. W.R. Martin, J.R. Weir, in Flow and fracture of metals and alloys in nuclear environments, ASTM STP 380 (ASTM, Philadelphia, PA, 1965), p. 251

  65. H.L. Heinisch, M.L. Hamilton, W.F. Sommer et al., J. Nucl. Mater. 155–157, 121 (1988)

    Article  Google Scholar 

  66. R.L. Klueh, Alloy development for irradiation performance semiannual progress report for period ending March 31, 1984 (Office of Fusion Energy, DOE/ER-0045/12, 1984), p. 45

  67. M.J. Makin, in Radiation Effects, Metallurgical Society Conferences, vol. 37, ed. by W.F. Sheely (Gordon and Breach, New York, 1967), p. 629

    Google Scholar 

  68. C.R. Barret, W.D. Nix, A.S. Tetelman, The Principles of Engineering Materials (Prentice-Hall Inc., 1973)

  69. H.H. Uhlig, Corrosion and Corrosion Control (John Wiley & Sons Inc., 1971)

  70. S. Şahin, R.W. Moir, A. Şahinaslan et al., Fusion Technol. 30(3), 1027 (1996)

    Google Scholar 

  71. R.W. Moir, R.L. Bieri, X.M. Chen et al., Fusion Technol. 25, 5 (1994)

    Article  Google Scholar 

  72. M.T. Tobin, Fusion Technol. 19, 763 (1991)

    Google Scholar 

  73. J.D. Lee, Fusion Technol. 26, 74 (1994)

    Google Scholar 

  74. J.M. Perlado, M.W. Guinan, K. Abe, Radiation damage in structural materials. in Energy from inertial fusion, (IAEA, Vienna, 1995)

  75. S. Şahin, A. Şahinaslan, M. Kaya, Fusion Technol. 34(2), 95 (1998)

    Google Scholar 

  76. S. Şahin, A. Şahinaslan, H.M. Şahin, Arabian J. Sci. Eng. 27(2A), 173 (2002)

    Google Scholar 

  77. S. Şahin, Ş. Yalçın, H.M. Şahin et al., Ann. Nucl. Energy 30(6), 669 (2003)

    Article  Google Scholar 

  78. M. Übeyli, Ann. Nucl. Energy 33, 1417 (2006)

    Article  Google Scholar 

  79. A.A.F. Tavassoli, J. Nucl. Mater. 302, 73 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Übeyli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Şahin, S., Übeyli, M. A Review on the Potential Use of Austenitic Stainless Steels in Nuclear Fusion Reactors. J Fusion Energ 27, 271–277 (2008). https://doi.org/10.1007/s10894-008-9136-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-008-9136-3

Keywords

Navigation