Skip to main content
Log in

Investigation of 14–15 MeV (n, t) Reaction Cross-sections by Using New Evaluated Empirical and Semi-empirical Systematic Formulas

  • Original Paper
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

In the hybrid reactor, tritium self-sufficiency must be maintained for a commercial power plant. For self-sustaining (D-T) fusion driver tritium breeding ratio should be greater than 1.05. Working out the systematics of (n, t) reaction cross-sections are of great importance for the definition of the excitation function character for the given reaction taking place on various nuclei at energies up to 20 MeV. In this study we have investigated asymmetry term effect for the (n, t) reaction cross-sections at 14–15 neutron incident energy. It has been discussed the odd–even effect and the pairing effect considering binding energy systematic of the nuclear shell model for the new experimental data and new cross-sections formulas (n, t) reactions developed by Tel et al. We have determined a different parameter groups by the classification of nuclei into even–even, even–odd and odd–even for (n, t) reactions cross-sections. The obtained empirical and semi-empirical formulas by fitting two parameter for (n, t) reactions were given. All calculated results have been compared with the experimental data and the other semi-empirical formulas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Şahin, et al., Fusion Technol. 10, 84 (1986)

    Google Scholar 

  2. S. Şahin, et al., Ann. Nucl. Energy 29, 1641 (2002a)

    Google Scholar 

  3. S. Şahin, et al., Energy Convers. Manage. 43, 6 (2002b)

    Google Scholar 

  4. S. Şahin, et al., Ann. Nucl Energy 30, 669 (2003)

    Article  Google Scholar 

  5. S. Şahin, et al., Kerntechnik. 70, 4 (2005)

    Google Scholar 

  6. M. Übeyli, E. Tel, J. Fusion Energy 22, 2 (2003)

    Google Scholar 

  7. V.N. Levkovskii, Sov. J. Phys. 18, 361 (1974)

    Google Scholar 

  8. S. Pearlstein, Nucl. Sci. Eng. 23, 238 (1965)

    Google Scholar 

  9. A. Adam, L. Jeki, Acta Physiol. Acad. Sci. Hung. 26, 335 (1969)

    Article  Google Scholar 

  10. S. Ait-Tahar, Nucl. Phys. 13, 121 (1987)

    Article  Google Scholar 

  11. Yu.A. Korovin, Yu.A. Konobeyev, Nucl. Instr. Methods B 103, 15 (1995)

    ADS  Google Scholar 

  12. M. Belgaid, M. Asghar, Appl. Radiat. Isot. 49, 1497 (1998)

    Article  Google Scholar 

  13. F.I. Habbani, K.T. Osman, Appl. Radiat. Isot. 54, 283 (2001)

    Article  Google Scholar 

  14. V. Weisskopf, Phys. Rev. 52, 295 (1937)

    Article  ADS  MATH  Google Scholar 

  15. V.F. Weisskopf, D.E. Ewing, Phys. Rev. 57, 472 (1940)

    Article  ADS  Google Scholar 

  16. I. Kumabe, K.J. Fukuda, Nucl. Sci. Technol. 24, 83 (1987)

    Google Scholar 

  17. N.I. Molla, S.M. Qaim, Nucl. Phys. A 283, 269 (1977)

    ADS  Google Scholar 

  18. V.N. Manokhin, et al., JAERI-Research 013 (2001)

  19. E. Tel, et al., J. Phys. G: Nucl. Part. Phys. 29, 2169 (2003)

    Article  ADS  Google Scholar 

  20. E. Tel, et al., Phys. Rev. C 75, 034614 (2007a)

    ADS  Google Scholar 

  21. E. Tel, et al., Acta. Phys. Slov. 54(2), 191 (2004)

    Google Scholar 

  22. A. Aydın, et al., Phys. Scr. 75, 299 (2007)

    Article  ADS  Google Scholar 

  23. C. Rubbia, et al., CERN/AT/95-44 (ET) (1995)

  24. C. Rubbia, CERN/LHC/96-11 (EET) (1996)

  25. E. Betak, et al., Nucl. Sci. Eng. 132, 295 (1999)

    Google Scholar 

  26. ENSDF (Evaluated Nuclear Structure Data File), National Nuclear Data Center, Brookhaven National Laboratory; Handbook for Calculations of Nuclear Reaction Data, Reference Input Parameter Library; IAEA-TECDOC-1034, Nuclear Data Section, International Atomic Energy Agency (1998)

  27. V. Mclane, CSISRS experimental nuclear data file, National Nuclear Data Center Brookhaven National Laboratory, http://www.nndc.bnl.gov/ (1997)

  28. M. Walt, in Angular Distributions of Elastically Scarred Neutrons, in Fast Neutron Physics, Part I, Techniques, ed. by J.B. Marion, J.L. Fowler (Interscience Publishers, New York, 1960), p. 509

    Google Scholar 

  29. E. Betak, et al., Radiochim. Acta. 93(6), 311 (2005)

    Article  Google Scholar 

  30. J.J. Griffin, Phys. Rev. Lett. 17, 478 (1966)

    Article  ADS  Google Scholar 

  31. E. Betak, Program for spectra and cross-section calculations within the pre-equilibrium model of nuclear reactions, Comp. Phys. Com. 9 92–101, E10, 71 Institute of Physics, Slovak Academy of Science, Dubravska cesta, 899 30, Czechoslovakia (PREEQ Program Code) (1995)

  32. M. Blann, H.K. Vonach, Phys. Rev. C 28, 1475 (1983)

    ADS  Google Scholar 

  33. M. Belgaid, et al., Nucl. Instr. Meth. B 201, 545 (2003)

    ADS  Google Scholar 

  34. S.M. Qaim, Nucl. Phys. A 438, 384 (1984)

    ADS  Google Scholar 

Download references

Acknowledgment

This work has been supported by State Planning Organization of Turkey project DPT-2006K # 120470

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Tel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tel, E., Aydın, A., Kaplan, A. et al. Investigation of 14–15 MeV (n, t) Reaction Cross-sections by Using New Evaluated Empirical and Semi-empirical Systematic Formulas. J Fusion Energ 27, 188–194 (2008). https://doi.org/10.1007/s10894-007-9121-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-007-9121-2

Keywords

Navigation