Skip to main content
Log in

Effects of the Hot Electron Interchange Instability on Plasma Confined in a Dipolar Magnetic Field

  • OriginalPaper
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

The Levitated Dipole Experiment (LDX) explores confinement and stability of plasma created within the dipole field of a strong superconducting magnet. During initial experiments, long-pulse, quasi-steady state discharges that last more than 10 s and have peak beta of more than 20% are studied. The plasma is created by multi-frequency electron cyclotron resonance heating (ECRH) at 2.45 and 6.4 GHz. A population of energetic electrons, with mean energies above 50 keV, dominates the plasma pressure. Creation of high pressure, high beta plasma is possible only when intense hot electron interchange (HEI) instabilities are stabilized by sufficient neutral gas fueling. The instabilities resonate with the magnetic drift motion of the energetic electrons and can cause rapid radial transport. Measurements of the electrostatic and magnetic fluctuations of the HEI instability are described along with observations of the instability’s spectral characteristics. Fluctuations of the outer poloidal field induced by the HEI show a rapid evolution of the perturbed pressure profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. J. Kesner, L. Bromberg, D. T. Garnier, M. E. Mauel, in Fusion Energy 1998 (IAEA, Vienna, 1999) 3, 1165.

  2. Hasegawa A. (1987) Comments Plasma Phys. Controll. Fusion, 1:147.

    Google Scholar 

  3. Rosenbluth M. N., Longmire C. L. (1957) Ann. Phys. 1:120.

    Article  MATH  MathSciNet  Google Scholar 

  4. Garnier D. T., Kesner J., Mauel M. E. (1999) Phys. Plasmas 6:3431.

    Article  Google Scholar 

  5. Kesner J., Bromberg L., Garnier D. T., Hansen A., Mauel M. E. (2004) Nucl. Fusion 44:193.

    Article  Google Scholar 

  6. I. Karim, et al., J. Fusion Energy.

  7. A. K. Hansen, et al., J. Fusion Energy.

  8. D. T. Garnier, et al., Phys. Plasmas, 13, 056111 (2006).

  9. Krall N. A. (1966) Phys. Fluids 9:820

    Article  Google Scholar 

  10. Warren H. P., Mauel M. E. (1995) Phys. Rev. Lett. 74:1351.

    Article  Google Scholar 

  11. Levitt B., Mastovsky D., Mauel M. E. (2002) Phys. Plasmas 9:2507.

    Article  Google Scholar 

  12. Maslovsky D., Levitt B., Mauel M. E. (2003) . Phys. Rev. Lett., 185001:90.

    Google Scholar 

Download references

Ackowledgments

Supported by U.S. DOE Grants DE-FG02-98ER54458 and DE-FG02-98ER54459.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Ortiz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortiz, E.E., Boxer, A.C., Ellsworth, J.L. et al. Effects of the Hot Electron Interchange Instability on Plasma Confined in a Dipolar Magnetic Field. J Fusion Energ 26, 139–144 (2007). https://doi.org/10.1007/s10894-006-9068-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-006-9068-8

Keywords

Keywords

Navigation