Skip to main content
Log in

Neutronic Analysis for Transmutation of Minor Actinides and Long-Lived Fission Products in a Fusion-Driven Transmuter (FDT)

  • Original Paper
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

 

This study presents the transmutations of both the minor actinides (MAs: 237Np, 241Am, 243Am and 244Cm) and the long-lived fission products (LLFPs: 99Tc, 129I and 135Cs), discharged from high burn-up PWR-MOX spent fuel, in a fusion-driven transmuter (FDT) and the effects of the MA and LLFP volume fractions on their transmutations. The blanket configuration of the FDT is improved by analyzing various sample blanket design combinations with different radial thicknesses. Two different transmutation zones (TZMA and TZFP which contain the MA and LLFP nuclides, respectively) are located separately from each other. The volume fractions of the MA and the LLFP are raised from 10 to 20% stepped by 2% and from 10 to 80% stepped by 5%, respectively. The calculations are performed to estimate neutronic parameters and transmutation characteristics per D–T fusion neutron. The conversion ratios (CRs) for the whole of all MAs are about 65–70%. The transmutation rates of the LLFP nuclides increase linearly with the increase of volume fractions of the MA, and the 99Tc nuclide among them has the highest transmutation rate. The variations of their transmutation rate per unit volume in the radial direction are quasi-concave parabolic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

Abbreviations

E :

neutron energy

E f :

energy per fission (200 MeV)

k eff :

neutron multiplication coefficient

L :

neutron leakage per fusion neutron

M :

blanket energy multiplication factor

n :

neutron

N :

atomic density in atoms/cm3

Q :

reaction energy in MeV

R x :

x-reaction rate in reactions/s

R x D :

x-reaction rate density in reactions/cm3/s

T6 :

tritium breeding ratio from 6Li

T7 :

tritium breeding ratio from 7Li

V :

volume in cm3

VF:

volume fraction in percentage

B/T:

burning and/or transmutation

CR:

conversion ratio

D–T:

deuterium–tritium

EC:

electron capture

FDT:

fusion-driven transmuter

FFHR:

force-free helical reactor

FW:

first wall

HLW:

high-level waste

LLFP:

long-lived fission product

MA:

minor actinide

MOX:

mixed oxide

NMZ:

neutron multiplier zone

PWR:

pressured water reactor

RZ:

reflector zone

SZ:

shielding zone

TBR:

tritium breeding ratio

BZ:

tritium breeding zone

TRU:

transuranium

TZ:

transmutation zone

α:

alpha particle

β:

beta decay

ϕ:

neutron flux in n·cm−2·s−1

γ:

capture

δ:

radial thickness in cm

σ:

microscopic cross-section in cm2

Γ:

peak-to-average fission power density ratio

A:

absorption

Be:

beryllium

C:

capture

f or F:

fission

FP:

long-lived fission product

Li2O:

lithium oxide

MA:

minor actinide

Max:

maximum

References

  1. Übeyli M. (2004). Energy Convers. Manage. 45:3219–3238

    Article  Google Scholar 

  2. Azizov E. A., et al. (2003). Plasma Devices Opera. 11:279–286

    Article  Google Scholar 

  3. Serikov A. et al. (2002). Fusion Eng. Des. 63:93–99

    Article  Google Scholar 

  4. Feng K. M., et al. (2002). Fusion Eng. Des. 63:127–132

    Article  Google Scholar 

  5. Feng K. M., Hu G. (1998). Fusion Eng. Des. 41:449–454

    Article  Google Scholar 

  6. Cheng E. T., Cerbone R. J. (1996). Fusion Technol. 30:1654–1658

    Google Scholar 

  7. Feng K. M., Zhang G. S. (2003). Nucl. Fusion 43:756–760

    Article  MathSciNet  Google Scholar 

  8. Stankovsky A., et al. (2003). Fusion Sci. Technol. 43:569–579

    Google Scholar 

  9. Saito M., et al. (2000). J. Nucl. Sci. Technol. 37:1024–1031

    Google Scholar 

  10. Saito M., et al. (2001). Nucl. Technol. 133:229–241

    Google Scholar 

  11. Takibaev, et al. (2000). J. Nucl. Sci. Technol. 37:870–876

    Article  Google Scholar 

  12. Tsutsui H., et al. (1998). Fusion Eng. Des. 41:431–436

    Article  Google Scholar 

  13. Vasiliev N. N., et al. (2003). Plasma Devices Opera. 11:123–129

    Article  Google Scholar 

  14. Gohar Y. (2001). Fusion Eng. Des. 58:1097–1101

    Article  Google Scholar 

  15. Stacey W. M., Hoffman E. A. (2001). Fusion Technol. 39:525–529

    Google Scholar 

  16. Gohar Y. (2001). Fusion Technol. 39:535–540

    Google Scholar 

  17. Chen Y. X., Wu Y. C. (2000). Fusion Technol. 49:507–512

    Article  Google Scholar 

  18. Qiu L. J., et al. (2000). Nucl. Fusion 40:629–633

    Article  Google Scholar 

  19. Qiu L. J., et al. (1994). Fusion Eng. Des. 25:167–177

    Google Scholar 

  20. Yapıcı H., et al. (2004). J. Fusion Energy 23:121–135

    Article  Google Scholar 

  21. Yapıcı H., Übeyli M. (2003). Ann. Nucl. Energy 30:159–173

    Article  Google Scholar 

  22. Yapıcı H. (2003). Energy Convers. Manage. 44:2893–2913

    Article  Google Scholar 

  23. Yapıcı H. (2003). Ann. Nucl. Energy 30:633–649

    Article  Google Scholar 

  24. Yapıcı H. (2003). Ann. Nucl. Energy 30:413–436

    Article  Google Scholar 

  25. Yapıcı H. (2003). Fusion Eng. Des. 65:599–609

    Article  Google Scholar 

  26. NEA, Calculations of Different Transmutation Concepts an International Benchmark Exercise, Nuclear Science Committee (2000).

  27. N. M. Greene, and L. M. Petrie, XSDRNPM: A One-Dimensional Discrete-Ordinates Code for Transport Analysis, Sect. F3 of SCALE: A Modular Code System for Performing Standardized Computer Analyses for Licensing Evaluation, NUREG/CR-0200, Rev. 6 (ORNL/NUREG/CSD-2/V2/R6), Vols. I, II, and III. Version 4.4a of the code package is available from Radiation Safety Information Computational Center (RSICC) at Oak Ridge National Laboratory as CCC-545 (2000).

  28. N. M. Greene, J. W. Arwood, RQ. Wright, CV. Parks, The LAW Library–A Multi group Cross-Section Library for Use in Radioactive Waste Analysis Calculations, ORNL/TM-12370, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab. (1994).

  29. H. Yapıcı, XSCALC for Interfacing Output of XSDRN to Calculate Integral Neutronic Data, Erciyes University/TURKEY (2001).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hüseyin Yapıcı.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yapıcı, H., Demir, N. & Genç, G. Neutronic Analysis for Transmutation of Minor Actinides and Long-Lived Fission Products in a Fusion-Driven Transmuter (FDT). J Fusion Energ 25, 225–239 (2006). https://doi.org/10.1007/s10894-006-9027-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-006-9027-4

Keywords

Navigation