Skip to main content
Log in

Utilization of Refractory Metals and Alloys in Fusion Reactor Structures

  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

In design of fusion reactors, structural material selection is very crucial to improve reactor’s performance. Different types of materials have been proposed for use in fusion reactor structures. Among these materials, refractory metals and alloys having capability to withstand high temperatures and high neutron wall loads have been considered to get high power density in fusion reactors. However, these materials have insufficient technological database and are very expensive compared to steels. In addition to that, except chromium and some chromium alloys they show no low activation property. This study gives an overview of potential of refractory metals and alloys for possible use in fusion reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. W. J. Hogan and E. Bertel, Introduction: Inertial Fusion Energy Fundamentals, Energy from Inertial Fusion, Editors; W. J. Hogan, J. Coutant, S. Nakai, V. B. Rozanov and G. Velarde (IAEA, Vienna 1995)

  2. Holden J. P. (1991) Annu. Rev. Energy Environ. 16: 235

    Article  Google Scholar 

  3. Abdou M. A., The APEX Team (1999) Fusion Eng. Design 45: 145

    Article  Google Scholar 

  4. M. A. Abdou, On the Exploration of Innovative Concepts for Fusion Chamber Technology, APEX Interim Report (Overview), UCLA-ENG-99-206, UCLA-FNT-107 (University of California, Los Angeles, California, 1999)

  5. Van der Schaaf B. (2000) Fusion Eng. Design 51–52: 43

    Article  Google Scholar 

  6. Tavassoli A. -A. (1995) Fusion Eng. Design 29: 371

    Article  Google Scholar 

  7. J. E. Pawell, A. F. Rowcliffe, D. J. Alexander, and M. L. Grossbeck et al. J. Nuclear Mater., 233–237, 202 (1996)

    Article  Google Scholar 

  8. Pawell J. E., Rowcliffe A. F., Lucas G. E. et al. (1996) J. Nuclear Mater. 239: 126

    Article  Google Scholar 

  9. Zinkle S. J., Maziasz P. J., Stoller R. E. (1993) J. Nuclear Mater. 206: 266

    Article  Google Scholar 

  10. Maziasz P. J. (1993) J. Nuclear Mater. 205: 118

    Article  Google Scholar 

  11. Horsten M. G., DeVries M. I. (1994) J. Nuclear Mater. 212–215: 514

    Article  Google Scholar 

  12. Puzzolante J-L., Scibetta M., Chaouadi R. et al. (2000) J. Nuclear Mater. 283–287: 428

    Article  Google Scholar 

  13. Rodchebkov B. S., Strebkov Y. S., Kalinin G. M. et al. (2000) Fusion Eng. Design 49–50: 657

    Article  Google Scholar 

  14. Klueh R. L., Cheng E. T., Grossbeck M. L. et al. (2000) J. Nuclear Mater. 280: 353

    Article  Google Scholar 

  15. Kohyama A., Hishinuma A., Kohno Y. et al. (1998) Fusion Eng. Design 41: 1

    Article  Google Scholar 

  16. Mukhopadhyay D. K., Froes F. H., Gelles D. S. (1998) J. Nuclear Mater. 258–263: 1209

    Article  Google Scholar 

  17. Krajnikov A. V., Demidik A. N., Ortner H. M. (1997) Mater. Sci. Eng. A 234–236: 357

    Google Scholar 

  18. Kimura K., Kushima H., Abe F. et al. (1997) Mater. Sci. Eng. A 234–236: 1079

    Google Scholar 

  19. Ishii T., Fukaya K., Nishiyama Y. et al. (1998) J. Nuclear Mater. 258–263: 1183

    Article  Google Scholar 

  20. Nagesha A., Valsan M., Kannan R. et al. (2002) Int. J. Fatigue 24: 1285

    Article  Google Scholar 

  21. Hara S., Abe T., Enoeda M. et al. (1998) J. Nuclear Mater. 258–263: 1280

    Article  Google Scholar 

  22. Klueh R. L., Alexander D. J. (1999) J. Nuclear Mater. 265: 262

    Article  Google Scholar 

  23. Kurtz R. J., Abe K., Chernov V. M. et al. (2000) J. Nuclear Mater. 283–287: 70

    Article  Google Scholar 

  24. Smith D. L., Billone M. C., Natesan K. (2000) Int. J. Refract. Metals Hard Metals 18: 213

    Article  Google Scholar 

  25. Chung H. M., Loomis B. A., Smith D. L. (1996) J. Nuclear Mater. 239: 139

    Article  Google Scholar 

  26. Smith D. L., Chung H. M., Matsui H. et al. (1998) Fusion Eng. Design 41: 7

    Article  Google Scholar 

  27. Muroga T., Nagasaka T. (2000) Int. J. Refract. Metals Hard Metals 18: 225

    Article  Google Scholar 

  28. Kuwabara T., Kurishita H., Hasegawa M. (2000) J. Nuclear Mater. 283–287: 611

    Article  Google Scholar 

  29. Bray T. S., Tsai H., Nowicki L. J. et al. (2000) J. Nuclear Mater. 283–287: 633

    Article  Google Scholar 

  30. Fukumoto K., Morimura T., Tanaka T. et al. (1996) J. Nuclear Mater. 239: 170

    Article  Google Scholar 

  31. Kurtz R. J., Hamilton M. L., Li H. (1998) J. Nuclear Mater. 258–263: 1375

    Article  Google Scholar 

  32. Chung H. M., Loomis B. A., Smith D. L. (1994) J. Nuclear Mater. 212–215: 772

    Article  Google Scholar 

  33. Kurtz R. J., Hamilton M. L. (2000) J. Nuclear Mater. 283–287: 628

    Article  Google Scholar 

  34. Jones R. H., Henager C. H. (1995) J. Nuclear Mater. 219: 55

    Article  Google Scholar 

  35. Riccardi B., Fenici P., Frias Rebelo A. et al. (2000) Fusion Eng. Design 51–52: 11

    Article  Google Scholar 

  36. Aiello G., Golfier H., Maire J-F. et al. (2000) Fusion Eng. Design 51–52: 73

    Article  Google Scholar 

  37. Kurihara R., Ueda S., Nishio S. et al. (2001) Fusion Eng. Design 54: 465

    Article  Google Scholar 

  38. Giancarli L., Bonal J. P., Caso A. et al. (1998) Fusion Eng. Design 41: 165

    Article  Google Scholar 

  39. Snead L. L., Schwarz O. J. (1998) J. Nuclear Mater. 219: 3

    Article  Google Scholar 

  40. Takahashi H., Shindo Y., Kinoshita H. et al. (1998) J. Nuclear Mater. 258–263: 1644

    Article  Google Scholar 

  41. Piatti G., Schiller P. (1986) J. Nuclear Mater. 141–143: 417

    Article  Google Scholar 

  42. Marchionni M., Boerman D. J. (1996) J. Nuclear Mater. 228: 129

    Article  Google Scholar 

  43. Suzuki Y., Saida T., Kudough F. (1998) J. Nuclear Mater. 258–263: 1687

    Article  Google Scholar 

  44. Merola M., Zucchetti M. (1992) Fusion Technol. 21: 129

    Google Scholar 

  45. A. El-Azab, In: M. Youssef, M. Sawan, C. Wong (eds) On the exploration of innovative concepts for fusion chamber technology, APEX Interim Report (Overview), UCLA-ENG-99-206, UCLA-FNT-107 (University of California, Los Angeles, California, 1999)

  46. Gold R. E., Harrod D. L. (1979) J. Nuclear Mater. 85&86: 805

    Article  Google Scholar 

  47. Buckman R. W. Jr. (2000) Int. J. Refract. Metals Hard Mater. 18: 253

    Article  Google Scholar 

  48. Feuerstein H., Grabner H., Oschinski J. et al. (1996) J. Nuclear Mater. 233–237: 1383

    Article  Google Scholar 

  49. Zinkle S. J., Ghoniem N. M. (2000) Fusion Eng. Design 51–52: 55

    Article  Google Scholar 

  50. Kalinin G. M. (1991) J. Nuclear Mater. 179–181: 1193

    Article  Google Scholar 

  51. S. J. Zinkle, In: M. Youssef, M. Sawan, C. Wong (eds) On the Exploration of Innovative Concepts for Fusion Chamber Technology, APEX Interim Report (Overview), UCLA-ENG-99-206, UCLA-FNT-107 (University of California, Los Angeles, California, 1999)

  52. Taylor L. H., Green L. (1996) Fusion Eng. Design 32–33: 105

    Article  Google Scholar 

  53. Stamm H., Bonansinga M.R., Dos Santos Marques F. et al. (1998) J. Nuclear Mater. 258–263: 1756

    Article  Google Scholar 

  54. Zucchetti M., Merola M. (1996) J. Nuclear Mater. 233–237: 1486

    Article  Google Scholar 

  55. Holzwarth U., Stamm H. (2002) J. Nuclear Mater. 300: 161

    Article  Google Scholar 

  56. Wadsack R., Pippan R., Schedler B. (2001) Fusion Eng. Design 58–59: 743

    Article  Google Scholar 

  57. Fabritsiev S. A., Pokrovsky A. S. (1998) J. Nuclear Mater. 252: 216

    Article  Google Scholar 

  58. Scibetta M., Chaouadi R., Puzzolante J. L. (2000) J. Nuclear Mater. 283–287: 455

    Article  Google Scholar 

  59. Chakin V., Kazakov V. (1996) J. Nuclear Mater. 233–237: 570

    Article  Google Scholar 

  60. Igata N., Kohyama A., Itadani K. (1979) J. Nuclear Mater. 85&86: 895

    Article  Google Scholar 

  61. Mattas R. F., Malang S., Khater H. et al. (2000) Fusion Eng. Design 49–50: 613

    Article  Google Scholar 

  62. Ioki K., Barabaschi P., Bruno L. (1998) Fusion Eng. Design 39–40: 585

    Article  Google Scholar 

  63. Smid I., Akiba M., Vieider G. et al. (1998) J. Nuclear Mater. 258–263: 160

    Article  Google Scholar 

  64. Yoshida N. (1999) J. Nuclear Mater. 266–269: 197

    Article  Google Scholar 

  65. Nemoto Y., Hasegawa A., Satou M. et al. (2000) J. Nuclear Mater. 283–287: 1144

    Article  Google Scholar 

  66. Kitsunai Y., Kurishita H., Kayano H. et al. (1999) J. Nuclear Mater. 271&272: 423

    Article  Google Scholar 

  67. Park J. J. (1999) Mater. Sci. Eng. A 265: 174

    Article  Google Scholar 

  68. Park J. J. (1999) Int. J. Refract. Metals Hard Mater. 17: 331

    Article  Google Scholar 

  69. J. B. Conway, In: R. H. Cooper Jr., E. E. Hoffman (eds) Proc. Symp. On Refractory Alloy Technology for Space Nuclear Power Applications, CONF-8308130 (Oak Ridge National Laboratory, 1984)

  70. H. E. McCoy, Oak Ridge National Report ORNL/TM-10127 (1986)

  71. D. C. Goldberg, In: W. F. Brown Jr. (ed) Aerospace Structural Metals Handbook, AFML-TR 68–115 (Metals and Ceramics Information Center, Battelle Columbus Laboratories, 1969)

  72. J. H. Devan, J. R. Distefano, E. E. Hoffman, In: R. H. Cooper Jr., E. E. Hoffman (eds) Proc. Symp. On Refractory Alloy Technology for Space Nuclear Power Applications, CONF-8308130 (Oak Ridge National Laboratory, 1984)

  73. E. E. Hoffman, J. H. Devan, J. R. Distefano, In: E. N. C. Dalder, T. Grobstein, C. S. Olsen (eds) Evolution of Refractory Metals and Alloys (The Minerals, Metals and Materials Society, Warrendale, PA, 1994)

  74. R. H. Burns, F. S. Shuker Jr., P. E. Mannin, In: R. E. Smallwood (ed) Refractory Metals and Their Industrial Applications (ASTM STP 849, Philadelphia, 1984)

  75. F. W. Wiffen, In: R. J. Arsenault (ed) Proc. Int. Conf. on Defects and Defect clusters in BCC Metals and Their Alloys, Nuclear Metallurgy Vol. 18 (National Bureau of Standards, Gaithersburg, MD, 1973)

  76. Tietz T. E., Wilson J. W. (1965) Behavior and Properties of Refractory Metals. Stanford University Press, Stanford, USA

    Google Scholar 

  77. F. W. Wiffen. In: R. H. Cooper Jr., E. E. Hoffman (eds) Proc. Symp. On Refractory Alloy Technology for Space Nuclear Power Applications, CONF-8308130 (Oak Ridge National Laboratory, 1984)

  78. Cambe A., Gauthier E., Layet J. M. et al. (2001) Fusion Eng. Design 56–57: 331

    Article  Google Scholar 

  79. Plansee International, Molybdenum, Metallwerk Plansee GmbH, 530 DEF 9.86

  80. R. I. Jaffee, D. J. Maykuth, and E. M. Sherwood, In: I. E. Campbell, E. M. Sherwood (eds) High Temperature Materials and Technology (John Wiley & Sons, 1967, pp. 152–187)

  81. T. A. Al-Kusayer, S. Şahin, and A. Drira, CLAW-IV, Coupled 30 Neutrons, 12 Gamma Ray Group Cross Sections with Retrieval Programs for Radiation Transport Calculations (RSIC Newsletter, Radiation Shielding Information Center, Oak Ridge National Laboratory, 1988)

  82. M. Übeyli, Mater. Design (2006) (in press)

  83. Übeyli M. (2003) J. Fusion Energy 22(4): 249–255

    Article  Google Scholar 

  84. Übeyli M. (2004) J. Fusion Energy 23(3): 183–189

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Übeyli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Übeyli, M., Yalçın, Ş. Utilization of Refractory Metals and Alloys in Fusion Reactor Structures. J Fusion Energ 25, 197–205 (2006). https://doi.org/10.1007/s10894-006-9019-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-006-9019-4

Keywords

Navigation