Skip to main content

Advertisement

Log in

Optimization of Production Process of a Semitransparent Layer Containing Foam by Considering Radiation and Using Finite Difference Method

  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

Regarding the importance of radiation in contemporary technology of the world, this paper presents a finite difference solution for geometric optimization of a radiative enclosure. In this regard, produced foams during glass melting process are one of the important factors for optimization of melting process and final product quality. On one hand, these foam causes prevention of some part of radiation energy from combustion to glass melt and also leads to increase in fuel and decrease in furnace output. On the other hand, they put high damages to final glass products. For designing a radiant enclosure, the radiative two-flux equation is coupled with the transient energy equation and radiation transfer equation (RTE).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Abbreviations

i :

intensity radiation

k :

thermal conductivity

l :

foam layer thickness

n :

refractive index

p :

pressure

\(\dot{Q}\) :

Internal heat generation

F d :

fraction of forward scattered radiation

q :

heat flux

T :

temperature

t :

time

x :

coordinate in direction perpendicular to foam layer

K:

extinction coefficient

ɛ:

emissivity

a :

absorption coefficient

σ:

scattering coefficient

ρ:

density

μ:

cosine of angle between path s and direction x

Φ:

viscous dissipation function

λ:

wavelength

κ:

optical thickness

b :

refers to black body

c :

refers to conduction

l :

refers to liquid phase

r :

refers to radiation

+:

refers to forward hemisphere

 − :

refers to backward hemisphere

References

  1. Sharbati E., Safavisohi B., and Aghanajafi C. (2004) J. Fusion Energy 23: 207

    Article  Google Scholar 

  2. B. Safavisohi, E. Sharbati, and C. Aghanajafi, Analysis of Transient of a Glass Layer by Considering the Effect of Radiation. Proc. of fourth international conference on computational heat & mass transfer, Paris, p. 1041

  3. Sadooghi P. (2005). J. Vinyl Additive Technol. 11: 28

    Article  Google Scholar 

  4. Sadooghi P. and Aghanajafi C. (2006) J. Appl. Polym. Sci. 100(5): 4181–4189

    Article  Google Scholar 

  5. Sadooghi P. and Aghanajafi C. (2005)., J. Reinforced Plastics Compos. 24(15): 1655–1665

    Article  Google Scholar 

  6. Su M.H. and Sutton W. H. (1995) J. Thermophys. Heat Transfer 9: 370

    Google Scholar 

  7. Gorthala R., Harris K.T., Roux J.A., and McCarty T.A. (1994) J. Thermophys. Heat Transfer 8: 125

    Google Scholar 

  8. Sadooghi P., and Aghanajafi C. (2003) J. Fusion Energy 22: 59

    Article  Google Scholar 

  9. Aghanajafi C. and Dehghani A. (2006). WSEAS Trans. Heat Mass Transfer 1(1):68–74

    Google Scholar 

  10. B. Safavisohi, E. Sharbati, C. Aghanajafi, and S. R. F. Khatami, accepted for publication in J. Fusion Energy

  11. B. Safavisohi, E. Sharbati, C. Aghanajafi, S. R. F. Khatami, Transient Radiative Heat Transfer Analysis of a Polypropylene Layer Using Hottel’s Zonal Method. Accepted for publication in 8th Biennial ASME Conference on Engineering Systems Design and Analysis, Italy

  12. Sadooghi P. and Aghanajafi C. (2004) Radiat. Eff. Defect Solids 159(1): 61–71

    Article  Google Scholar 

  13. Petrov V. A. (1997). Int. J. Heat Mass Transfer 40: 2241

    Article  MATH  Google Scholar 

  14. Wu C.Y., and Ou N. R. (1994) Int. J. Heat Mass Transfer 37: 2657

    Google Scholar 

  15. Frankel J. I. (1995) J. Thermophys. Heat Transfer 9: 210

    Article  Google Scholar 

  16. Derevyanko G.V., and Koltun P.S. (1991) J. Eng. Phys. 61: 680

    Article  Google Scholar 

  17. Fedorov A. and Viskanta R., (2000) Phys. Chem. Glasses 41(3): 127–135

    Google Scholar 

  18. Fedorov A. and Viskanta R., (2000) J. Am. Ceramic Society 83(11): 2769–2776

    Article  Google Scholar 

  19. Pilon L., Fedorov A. and Viskanta R., (2000) J. Cell. Plast. 41(3): 127–135

    Google Scholar 

  20. Pilon L., Fedorov A., and Viskanta R., (2001) J. Colloid Interface Sci. 242(2):425–436

    Article  Google Scholar 

  21. Pilon L., Fedorov A., and Viskanta R., (2002) Chem. Eng. Sci. 57: 977–990

    Article  Google Scholar 

  22. Fan T. H. and Fedorov A. G., (2002) J. Quant. Spectrosc. Radiat. Transfer 73:285–296

    Article  Google Scholar 

  23. Varady M. and Fedorov A. G., (2002) ASME J. Heat Transfer 124(6): 1103–1110

    Article  Google Scholar 

  24. Fan T. H. and Fedorov A. G., (2002) ASME J. Heat Transfer 124(6): 1103–1110

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Safavisohi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aghanajafi, C., Safavisohi, B. Optimization of Production Process of a Semitransparent Layer Containing Foam by Considering Radiation and Using Finite Difference Method. J Fusion Energ 25, 213–217 (2006). https://doi.org/10.1007/s10894-006-9016-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-006-9016-7

Keywords

Navigation