Skip to main content

Advertisement

Log in

Environmental and Safety Aspects of Using Tritium in Fusion

  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

Today most current fusion research and development activity is based on the expectation that the D–T reaction will be used for the first generation of fusion reactors. This mixture is the premier candidate for a fusion fuel on account of its outstanding energy gain. Fusion reactors will produce neither the problematic emissions now experienced from fossil-fuel-burning power plants nor the long-lived fission products and transuranic elements resulting from fission reactors. Even though, tritium is a radioactive isotope of hydrogen with 12.32 years half-life that exposes beta radiation. Although its specific activity is relatively weak but because of its gaseous state, it can leak easily from its container and contaminate its surrounding. In order to improving safety and reliability of fusion reactors, research groups jointly investigate radiation hazards resulting from the release of tritium and activation products during normal operations as well as accidental conditions. In this paper, some of the most significant safety and environmental aspects of tritium is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Intenational Thermonuclear Experimental Reactor.

  2. Linear Energy Transfer.

  3. Cumulative Complementary Frequency Distribution.

References

  1. DOE Handbook, Tritium Handling and Safe Storage (U.S. Department of Energy Washington, D.C. 20585, March 1999)

  2. Vasaru G. (1993) Tritium Isotope Separation. CRC Press Inc., Boca Raton

    Google Scholar 

  3. G. Vasaru, Sources of Tritium, in Proc. of the 2nd International Conference On Nuclear Science and Technology in Iran, Shiraz University, April 2004

  4. Oliphant M. L. E., Harteck P., Rutherford Lord (1934). Proc. Roy. Soc. A 144:692

    Google Scholar 

  5. Alvarez L. W., Cornog R. (1939). Phys. Rev. 2 56:613

    Article  Google Scholar 

  6. L. L. Burger, The Seperation and Control of Tritium, 211B00990, Battelle Pacific Northwest Lab., Richland, Wa (1972)

  7. G. Hut, Tritium as a stratospheric tracer, in nuclear structure, K. Abrahams, K. A. Allaart, and E. R. Diepering (Eds.), (NASIS, Series B no. 67 Plenum Press, New York, 1981)

  8. Technical Reports series no. 421, Management of Waste Containing Tritium and Carbon-14, (Printed by the IAEA, in Austria, 2004)

  9. Craig H., Lal D. (1961) The production rate of natural tritium. Tellus 13:85

    Article  Google Scholar 

  10. J. Jousel, Note CEA-N-1685, CEN-Saclay (1974)

  11. G. Bal, Note CEA-N-468, CEN-Saclay (1964)

  12. McKAY H. A. C. (1979) Eur. Appl. Res. Rep., Nucl. Sci. 1:599

    Google Scholar 

  13. A review of the prospects for laser induced thermonuclear fusion, AECL-4840 (Chalk River, Ontario, 1974)

  14. A. A. Harms, K. F. Schoepf, G. H. Miley, and D. R. Kingdon, Principles of Fusion Energy (World Scientific Press Inc., 2000)

  15. H. A. C. McKAY, Proc. of the International Symposium of Management of Gaseous Wastes from Nuclear Facilities, IAEA, Vienna, 1980, p. 59

  16. Taylor N. P. (2005) Fusion Sci. Technol. 47(1):959

    Google Scholar 

  17. B. Brandt, H. Th. Klippel, and W. Schuurman, Report RR-77-8 reviewed and updated, Rijnhuizen report, 81 (1981)

  18. R. A. Ristinen and Jack J. Krauslaar, Energy and the Enviroment (John Wiley & Sons Inc., 1999)

  19. Keishiro Niu, Nuclear Fusion (Cambridge University Press, 1989)

  20. Terry Kammash, Fusion Reactor Physics, Principles and Technology (Ann Arbor Science Publishers, 1975)

  21. Dean S. O. (1998). J. Fusion Energy 17(2):151

    Article  MathSciNet  Google Scholar 

  22. Nevins W. M. (1998). J. Fusion Energy 17(1):25

    Article  MathSciNet  Google Scholar 

  23. S. O. Dean, J. Fusion Energy, 23, No. 2, 111 (June 2004, © 2005)

  24. P. E. Coyle, IAEA-SM-232/102, in Proceeding of the symposium Behaviour of Tritium in the Environment, San Francisco, 1978, p. 139

  25. Goldston R., Abdou M., Baker C., Campbell M. (2002). J. Fusion Energy 21(2):61

    Article  Google Scholar 

  26. Tahir N. A., Hoffman D. H. H. (1998). Fusion Technol. 33:164

    Google Scholar 

  27. Atzeni S., Ciampi M. L. (1997). Nuclear Fusion 37(12):1665

    Article  Google Scholar 

  28. Khoda-Bakhsh R., Hora H., Miley G. H. (1993). Fusion Technol. 24:28

    Google Scholar 

  29. Khoda-Bakhsh R., Hora H., Miley G. H., Stening R. J., Pieruschka P. (1992). Fusion Technol. 22:50

    Google Scholar 

  30. T. M. Krishnamoorthy, G. Solis De Bravo, N. B. Juan, and A. Yuthamanop, IAEA-SM-232/100, in Proceeding of the Symposium Behaviour of Tritium in the Environment, San Francisco, 1978, p. 385

  31. D. J. Mewissen, M. E. Furedi, A. S. Ugarte, and J. H. Rust, IAEA-SM-232/63, in Proceeding of the Symposium Behaviour of Tritium in the Environment, San Francisco, 1978, p. 469

  32. Kolbasov B. N. (1993). J. Fusion Energy 12(1/2):121

    Article  Google Scholar 

  33. Murata M., Yamamoto H., Matsushita K. (1992). Fusion Technol. 21:673

    Google Scholar 

  34. ICRP-60, The International Commission of Radiological Protection, ICRP (Pergamon Press, 1990)

  35. Cember H. (1983) Intraction to Health Physics. 2nd Ed., Pergamon Press, New York, Oxford

    Google Scholar 

  36. Petti D., McCarthy K. (2000). Fusion Sci. Technol. 37(1):1

    Google Scholar 

  37. J. Raeder, et al., Safety and Environment for ITER – Specialists Meeting – Record and Conclusions, ITER-TN-SA-8-3 (August 1988)

  38. Latkowski J. F., Vujic J. L. (1998). Fusion Technol. 33:298

    Google Scholar 

  39. A. C. Upton, Phys. Today, 34 (August 1991)

  40. Raskob W. (1992). Fusion Technol. 21:636

    Google Scholar 

  41. Yoshida S., Murata I., Takahashi A. (1998). Fusion Technol. 34:656

    Google Scholar 

  42. Cadwallader L. C. (2003). Fusion Sci. Technol. 44(2):369

    Google Scholar 

  43. J. E. Villagran and D. W. Whillians, Helth Physics Society Meeting (New Orleas, 1984)

  44. McConville G. T., Wood C. M. (1995). Fusion Technol. 28:905

    Google Scholar 

  45. R. B. Cumming, G. A. Sega, and M. F. Walton, IAEA-SM-232/78, in Proceeding of the Symposium Behaviour of Tritium in the Environment, San Francisco, 1978, p. 463

  46. W. Raskob, Report Kfk-4605, Kernforschungszentrum Karlsruhe (1990)

  47. Raskob W. (1993). J. Fusion Energy 12(1/2):149

    Article  Google Scholar 

  48. Holland D. F., Cadwallader L. C., Piet S. J. (1992). Fusion Technol. 21:1989

    Google Scholar 

  49. Cadwallader L. C. (2005). Fusion Sci. Technol. 47(1):983

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elahe Alizadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alizadeh, E. Environmental and Safety Aspects of Using Tritium in Fusion. J Fusion Energ 25, 47–55 (2006). https://doi.org/10.1007/s10894-006-9000-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-006-9000-2

KEY WORDS

Navigation