An Overview of Tokamak Alternatives in the US Fusion Program with the Aim of Fostering Concept Innovation

Abstract

The US fusion program has operated for just over 50 years, during which time the tokamak has emerged as the most promising vehicle for a burning plasma experiment. However, many other concepts have been built and investigated as alternatives (and possible improvements) to the tokamak, perhaps to make energy from fusion an economic reality sooner. This Paper is an overview of the conventional alternatives to the tokamak and a set of those that are not so conventional with the aim of fostering concept innovation. Usually the devices are grouped into magnetic, inertial, electrostatic, or other categories, with sub-categories. Here, the groupings of conventional- and non-conventional-alternatives are used too. The conventional alternatives are those devices that have been adopted as serious alternatives, and for which many references are immediately available (e.g. rfp, mirror, stellarator, spheromak, laser ICF, etc). The non-conventional alternatives comprise approaches that are not being currently investigated or are worth consideration. In this grouping lie ideas like impact fusion, muon catalyzed fusion, and many historical ones (like the Elmo Bumpy Torus). Several examples of the physics of non-conventional alternatives are presented in summary form as examples of skunkworks in the hope that others will take up the challenge of concept innovation.

This is a preview of subscription content, access via your institution.

References

  1. S. Woodruff, Proc. Innovative Confinement Concepts Workshop Madison, 2004 http://plasma.physics.wisc.edu/icc2004/.

  2. T. Dolan, Fusion Research Pergamon Press 1982, ISBN 0-08-025565-5.

  3. C. M. Braams and P. E. Stott, Nuclear Fusion: Half a Century of Magnetic Confinement Fusion Research IoP Publishing ISBN 0-7503-0705-6.

  4. E. Teller, Fusion ISBN 0126852014.

  5. J. Lindl, Phys. Plasmas 2, 3933 (1995); J. Lindl Inertial Confinement Fusion: The Quest for Ignition and Energy Gain Using Indirect Drive Springer 1997 ISBN: 156396662X.

  6. T. K. Fowler, Rev. Mod. Phys., 71 (2), (1999).

  7. R. F. Am. J. Phys., 68, 105 (2000). Contains a valuable list of references for fusion as an overview.

  8. Najimabadi et al., J. Fusion Energy, 15 (3/4), p. 249 (1996); Boozer et al., Advisory Committee (see [15]); and P.M. Bellan Spheromaks World Scientific 1999 ISBN: 1860941419; and HIF ref. http://hif.lbl.gov/VNLhome.html.

  9. Special edition of the Journal of Fusion Energy 17 (3), (1998) containing the proceedings from the Symposium on Cost Effective Steps to Fusion Power.

  10. Snowmass proceedings: http://web.gat.com/snowmass/ summarized by Bangerter et al., see particularly Barnes’s contribution; D. C. Barnes, J. Fusion Energy, 18 (1), p. 13 (1999).

    Google Scholar 

  11. ICC website: http://plasma.physics.wisc.edu/icc2004/.

  12. J. Bromberg, Fusion: Science, Politics, and the Invention of a New Energy Source MIT Press 1982, ISBN 0-262-02180-03.

  13. R. Conn Reflections on Fusion’s History and Implications for Fusion’s Future, Proceedings of Snowmass (1999).

  14. R. E. Rowberg (1999) J. Fusion Energy 18 29 Occurrence Handle10.1023/A:1018822907976

    Article  Google Scholar 

  15. OFES http://www.ofes.fusion.doe.gov/More_HTML/FESAC_ Charges_Reports.html.

  16. T. K. Fowler, The Fusion Quest Johns Hopkins University Press (1997) ISBN: 0801854563.

  17. T. A. Heppenheimer, Bookthrift Co (1st edition, 1984) ISBN: 0316357936; R. Herman, Fusion: The Search for Endless Energy Cambridge University Press ISBN 0521383730.

  18. D. C. Robinson, Philos, Trans. R. Soc. Lond. A 357, 515–531 (1999); M. Haines, Plasma Phys. Control. Fusion, 38 643–656 (1996).

  19. N. J. Peacock et al. (1969) Nature 224 448

    Google Scholar 

  20. Burning Plasma Assessment Committee, Board on Physics and Astronomy, Division on Engineering and Physical Sciences (2003) 185 pp.; ISBN 0-309-09082-2; available from the National Academies Press

  21. R. Goldston, et al, J. Fusion Energy 21,(2002).

  22. A. Davies U.S. Fusion Energy Science Program presented to the NRC Burning Plasma Assessment Committee.

  23. Physics Today, April 2004.

  24. J. H. Nuckolls L. Wood A. Thiessen G. B. Zimmerman (1972) Nature 239 129

    Google Scholar 

  25. D. D. Ryutov R. E. Siemon (2001) Phys. Control. Fusion 2 IssueIDC 185

    Google Scholar 

  26. McCarthy et al. (2002) J. Fusion Energy 21 IssueID3/4 121 Occurrence Handle10.1023/A:1026281007353

    Article  Google Scholar 

  27. US DoE Workshop on Cold Fusion Phenomena, J. Fusion Energy, l9 (1–4) 1990.

    Google Scholar 

  28. see, e.g. Physics Today http://www.physicstoday.org/vol-57/iss-4/p27.html.

  29. R. P. Taleyarkhan, J. S. Cho, C. D. West, R. T. Lahey, Jr., R. I. Nigmatulin, and R. C. Block Phys. Rev. E 69, 036109 (2004)

  30. L. J. Perkins and Scott W. Haney, White Paper Submitted at the Request of Advanced Energy Projects Division U.S. Department of Energy, March 7 (1996).

  31. W. Manheimer (2001) J. Fusion Energy 20 131 Occurrence Handle10.1023/A:1023480817784

    Article  Google Scholar 

  32. Y. C. F. Thio, et al., Current Trends in International Fusion Research, Proceedings Of the in E. Panavella (Ed.), Second Symposium, Plenum Press, New York (1999).

  33. R. Post (2002) Plasma Phys. Reports, 38 IssueID9 712

    Google Scholar 

  34. P. E. Moroz, Phys. Lett. A., 79 (1997).

  35. R. J. Colchinet et al. (1983) Plasma Phys. 25 597–615 Occurrence Handle10.1088/0032-1028/25/6/002

    Article  Google Scholar 

  36. Proceedings of the 1979 Impact Fusion Workshop A. T. Pease Los Alamos, NM, July 10–12, LA-8000-C (1979).

  37. F. Winterberg (1992) Phys. Fluids., B 4 IssueID10 3350–3355

    Google Scholar 

  38. F. Winterberg, ICC workshop 2004.

  39. J. Zweiback et al. (2000) Phys. Rev. Lett. 84 2634–2637 Occurrence Handle10.1103/PhysRevLett.84.2634

    Article  Google Scholar 

  40. T. Ditmire (1997) Nature 386 54–56 Occurrence Handle10.1038/386054a0

    Article  Google Scholar 

  41. K. Nagamine (2003) Nuclear Phys., A 271 863–866

    Google Scholar 

  42. K. Ishida et al. (2003) J. Phys.G 29 2043–2045

    Google Scholar 

  43. D. D. Ryutov, A Radical Restructuring of the Fusion Effort Proceedings of Snowmass (1999).

  44. D. D. Ryutov, The Role of Innovations in Fusion Research Proceedings of 15th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, IAEA, Seville 26th September–1 October (1994).

  45. ESAC Workforce Panel Report January (2004).

  46. World Survey of Activities in Controlled Fusion Research, Nuclear Fusion Supplement (1997).

  47. Fusion Energy Development, J. Fusion Energy 6 (2) (1987) Special Edition.

  48. FESAC Priorities Committee http://www.mfescience.org/fesac/index.html.

  49. Thomson and Blackman patent from 1946, reprinted recently in Plasma Physics and Controlled Fusion (see [18]).

  50. M. Umansky, private communication.

  51. MIT Technology Review (September 2003).

  52. J. Loman Business Needs Regarding Fusion: Lessons Learned From Alternative Energy Proceedings of ICC 2004 (see [11]).

  53. . J. Perkins, The Role of Inertial Energy in the Energy Marketplace of the 21st Century and Beyond Nuclear Instruments and Methods in Physics Research A 415, 44 (1998).

  54. A. Wootton L. J. Perkins (2000) Plasma, Phys. Control. Fusion 42 B125–B141

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S Woodruff.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Woodruff, S. An Overview of Tokamak Alternatives in the US Fusion Program with the Aim of Fostering Concept Innovation. J Fusion Energ 23, 27–40 (2004). https://doi.org/10.1007/s10894-004-1869-z

Download citation

Keywords

  • Fusion
  • history
  • alternates
  • tokamak
  • skunkwork
  • innovation
  • innovative confinement concepts