Skip to main content
Log in

Level and activities of antioxidants in intestine of larvae Galleria mellonella L. (Lepidoptera, Pyralidae) at peroral infestation by bacteria Bacillus thuringiensis ssp. galleriae

  • Comparative and Ontogenic Biochemistry
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

In intestine of larvae Galleria mellonella L. (Lepidoptera, Pyralidae) there were revealed changes of activities of enzymatic antioxidants—superoxide dismutase (SOD), glutathione S-transferase (GT), and catalase and of concentrations of non-enzymatic antioxidants—oxidized and reduced thiols (RSSR/RSH) during development of bacterial infection caused by bacteria Bacillus thuringiensis ssp. galleriae, strain 69-6 (BT). An increase of the activities of SOD and GT as well as of the ratio of oxidized to reduced thiols were shown alongside with a decrease of catalase activity in larvae infestated with BT during the experiment. This seems to be due to that during the pathological process, changes of the ratio of components of antioxidant system take place. It is suggested that changes in the antioxidant system of larvae G. mellonella can occur during the “oxidative stress” accompanying destructive processes in the intestine at the period of development of bacterial infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Zenkov, N.K., Lankin, V.Z., and Men’shchikova, E.B., Okislitel’nyi stress: biokhimicheskii i patofiziologicheskii aspekty (Oxidative Stress: Biochemical and Pathophysiological Aspects), Moscow, 2001.

  2. Yankovskii, O.Yu., Toksichnost’kisloroda i biologicheskie sistemy (evolyutsionnye, ekologicheskie i mediko-biologicheskie aspekty) (Toxicity of Oxygen and Biological Systems (Evolutionary, Ecological, and Medico-Biological Aspects)), St. Petersburg, 2000.

  3. Wan, Y., Oberley, L.W., and Murhammer, D.W., Antioxidant Defense Systems of Two Lepidopteran Insect Cell Lines, Free Radical Biol. Med., 2001, vol. 30, pp. 1254–1262.

    Google Scholar 

  4. Felton, G.W. and Summers, C.B., Antioxidant Systems in Insects, Arch. Insect Biochem. Physiol., 1995, vol. 2, pp. 187–197.

    Google Scholar 

  5. Barbehenn, R.V., Gut-Based Antioxidant Enzymes in a Polyphagous and a Graminivorous Grasshopper, J. Chem. Ecol., 2002, vol. 28, pp. 1329–1347.

    Google Scholar 

  6. Udupi, V. and Rice-Evans, C., Thiol Compounds as Protective Agents in Erythrocyte under Oxidative Stress, Free Radical Res. Commun., 1992, vol. 16, pp. 315–323.

    Google Scholar 

  7. Rahman, I. and Macnee, W., Regulation of Redox Glutathione Levels and Gene Transcription in Lung Inflammation: Therapeutic Approaches, Free Radical Biol. Med., 2000, vol. 28, pp. 1405–1420.

    Google Scholar 

  8. Wang, Y., Oberley, L.W., and Murhammer, D.W., Evidence of Oxidative Stress Following the Viral Infestation of Two Lepidopteran Insect Cell Lines, Free Radical Biol. Med., 2001, vol. 31, pp. 1448–1455.

    Google Scholar 

  9. Khodr, B. and Khalil, Z., Modulation of Inflammation by Reactive Oxygen Species: Implications for Aging and Tissue Repair, Free Radical Biol. Med., 2001, vol. 30, pp. 1–8.

    Google Scholar 

  10. Mehta, A., Singh, S., Dhawan, V., and Ganguly, K.N., Intestinal Mucosal Lipid Peroxidation and Absorptive Function in Salmonella typhimurium Mediated Intestinal Infestation, Mol. Cell. Biochem., 1998, vol. 178, pp. 345–352.

    Google Scholar 

  11. Pavlick, K.P., Laroux, F.S., Fuseler, J., Wolf, R.E., Gray, L., Hoffman, J., and Grisham, M.B., Role of Reactive Metabolites of Oxygen and Nitrogen in Inflammatory Bowel Disease, Free Radical Biol. Med., 2002, vol. 33, pp. 311–322.

    Google Scholar 

  12. Paes, M.C., Oliveira, M.B., and Oliveira, P.L., Hydrogen Peroxide Detoxification in the Midgut of the Blood-Sucking Insect Rhodnius prolixus, Arch. Insect. Biochem. Physiol., 2001, vol. 48, pp. 63–71.

    Google Scholar 

  13. Yu, S.J., Induction of New Gluthatione S-Transferase Isozymes by Allelochemicals in the Fall Armyworm, Pestic. Biochem. Physiol., 1999, vol. 63, pp. 163–171.

    Google Scholar 

  14. Nappi, A.J. and Vass, E., Hydrogen Peroxide Production in Immune-Reactive Drosophila melanogaster, J. Parasitol., 1998, vol. 84, pp. 1150–1157.

    Google Scholar 

  15. Barbehenn, R.V., Bumgarner, S.L., Roosen, E.F., and Martin, M.M., Antioxidant Defenses in Caterpillars: Role of the Ascorbate-Recycling System in the Midgut Lumen, J. Insect Physiol., 2001, vol. 47, pp. 349–357.

    Google Scholar 

  16. Habig, W.H., Pabst, M.J., and Jakoby, W.B., Glutathione-S-Transferases, J. Biol. Chem., 1974, vol. 249, pp. 7130–7139.

    Google Scholar 

  17. Missirlis, F., Phillips, J.P., and Jackle, H., Cooperative Action of Antioxidant Defense Systems in Drosophila, Current Biology, 2001, vol. 11, pp. 1272–1277.

    Google Scholar 

  18. Choi, G.J., Lee, H.J., and Cho, K.Y., Involvement of Catalase and Superoxide Dismutase in Resistance of Botyitis cinerea to Dicarboximide Fungicide Vinclozolin, Pestic. Biohem. Physiol., 1997, vol. 59, pp. 1–10.

    Google Scholar 

  19. Peric-Mataruga, V., Blagojevic, D., Spasic, M. B., Ivanovic, J., and Jankovic-Hladni, M., Effect of the Host Plant on the Antioxidative Defense in the Midgut of Lymantria dispar L. Caterpillars of Population Origins, J. Insect. Physiol., 1996, vol. 43, pp. 101–106.

    Google Scholar 

  20. Lozinskaya, A.L., Slepneva, I.A., Khramtsov, V.V., and Glupov, V.V., Change of Antioxidant Status and System of Generation of Free Radicals in Hemolymph of Galleria mellonella Larvae in Microsporidiosis, Zh. Evol. Biokhim. Fiziol., 2004, vol. 40, pp. 99–103.

    Google Scholar 

  21. Arking, R., Burde, V., Graves, K., Hari, R., Feldman, E., Zeevi, A., Soliman, S., Saraiya, A., Buck, S., Vettraino, J., and Sathrasala, K., Identical Longevity Phenotypes Are Characterized by Different Patterns of Gene Expression and Oxidative Damage, Exp. Gerontol., 2000, vol. 35, pp. 353–373.

    Google Scholar 

  22. Mockett, R.J., Orr, W.C., Rahmander, J.J., Sohal, B.H., and Sohal, R.S., Antioxidant Status and Stress Resistance in Long-and Short-Lived Lines of Drosophila melanogaster, Exp. Gerontol., 2001, vol. 36, pp. 411–630.

    Google Scholar 

  23. Tamarina, N.A., Technical Entomology—A New Sphere of Applied Entomology, Itogi nauku i tekhniki (Advances in Science and Technology), VINITI, Entomologiya, 1987, vol. 7, pp. 248–258.

    Google Scholar 

  24. Burtseva, L.I., Skvortsova, M.M., and Shashkina, N.I., On Selection of Strains Bac. thurindiensis var. galleriae for Producation of Entobacterin, Sib. Vest. Sel’khoz. Nauk, 1973, vol. 2, p.33.

    Google Scholar 

  25. McCord, J.M. and Fridovich, I., Superoxide Dismutase: An Enzymic Function for Erythrocuprein (Hemocuprein), J. Biol. Chem., 1969, vol. 244, pp. 6049–6055.

    Google Scholar 

  26. Khramtsov, V.V., Yelinova, V.I., Glazachev, Yu.I., Reznikov, V.A., Zimmer, G., Weiner, L., Berezina, T., Martin, V., and Volodarsky, L., Quantitative Determination and Reversible Modification of Thiols Using Imidazolidine Biradical Disulfide Label, J. Biochem. Biophys. Methods, 1997, vol. 35, pp. 115–128.

    Google Scholar 

  27. Khramtsov, V.V., Yelinova, V.I., Weiner, L., Berezina, T., Martin, V., and Volodarsky, L., Quantitative Determination of SH Groups in Low and High Molecular Weight Compounds by an EPR Method, Analytic. Biochem., 1989, vol. 182, pp. 58–63.

    Google Scholar 

  28. Bradford, M.M., A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein Dye Binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Google Scholar 

  29. Dospekhov, B.A., Metodika polevogo opyta (s osnovami statisticheskoi obrabotki resul’tatov issledovanii) (Procedure of Field Experiment (with Grounds of Statistical Processing of Results of Studies)), Moscow, 1985.

  30. Rausell, C., De Decker, N., Garcia-Robles, I., Escrihe, B., Van Kerkhove, E., Real, M.D., and Martinez-Ramirez, A.C., Effect of Bacillus thuringiensis Toxins on the Midgut of the Nun Moth Lymantria monacha, J. Invert. Pathol., 2000, vol. 75, pp. 288–291.

    Google Scholar 

  31. Gill, S.S., Cowles, E.A., and Pietrantonio, P.V., The Mode of Action of Bacillus thuringiensis Endotoxins, Annu. Rev. Entomol., 1992, vol. 37, pp. 661–636.

    Google Scholar 

  32. Yoshikawa, T., Takahashi, S., and Kondo, M., Possible Role of Free Radicals in the Chronic Inflammation of the Gut, EXS, 1992, vol. 62, pp. 353–368.

    Google Scholar 

  33. Shternshis, M.V., Povyshenie effektivnosti microbiologicheskoi bor’by s vrednymi nasekomymi (Increase of Effectiveness of Microbiological Fighting with Noxious Insects), Novosibirsk, 1995.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, Vol. 41, No. 1, 2005, pp. 18–22.

Original Russian Text Copyright © 2005 by Dubovskii, Olifirenko, Glupov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubovskii, I.M., Olifirenko, O.A. & Glupov, V.V. Level and activities of antioxidants in intestine of larvae Galleria mellonella L. (Lepidoptera, Pyralidae) at peroral infestation by bacteria Bacillus thuringiensis ssp. galleriae . J Evol Biochem Phys 41, 20–25 (2005). https://doi.org/10.1007/s10893-005-0030-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10893-005-0030-6

Keywords

Navigation