Skip to main content
Log in

Investigation of the Plastic Deformation of a Rotating Disk from an Alloy Reinforced with Incoherent Nanoparticles

  • MISCELLANEA
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

An investigation has been conducted into the plastic deformation of a rotating disk from aluminum-based dispersion-hardened alloy. The effects of the size of strengthening particles on a material’s strength properties have been identified. Simulation results show that the strengthening of a material with nanoparticles change substantially strength characteristics. In alloys with shorter distances between the strengthening particles, a high disk rotation frequency is required for achieving plastic deformation at one and the same volume fraction of particles. With increase in temperature the material plasticizes more, i.e., it becomes more yielding, which is accompanied by a reduction in the material flow stress. As a result, a decrease occurs in the rotation frequency at which plastic deformation begins. With increase in the inner and external radii of the disk, at its one and the same width, the disk′s resistance to plastic deformation decreases, and the beginning of plastic deformation occurs at a lower rotation frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Orowan, Condition for dislocation passage of precipitations, Proc. Symp. on Internal Stresses in Metals and Alloys, Institute of Metals, London (1948), pp. 451–454.

  2. M. F. Ashby, Work hardening of dispersion-hardened crystals, Philos. Mag., 14, Issue 132, 1157-1178 (1966).

    Article  ADS  CAS  Google Scholar 

  3. R. Ebeling and M. F. Ashby, Dispersion hardening of copper single crystals, Philos. Mag., 13, Issue 124, 805-834 (1966).

    Article  ADS  CAS  Google Scholar 

  4. P. M. Hazzledine and P. B. Hirsch, A coplanar Orowan loops model for dispersion hardening, Philos. Mag., 30, Issue 6, 1331-1351 (1974).

    Article  ADS  CAS  Google Scholar 

  5. F. J. Hymphreys and J. W. Martin, The effect of dispersed phases upon dislocation distributions in plastically deformed copper crystals, Philos. Mag., 16, Issue 143, 927–957 (1967); https://doi.org/10.1080/14786436708229685.

    Article  ADS  Google Scholar 

  6. T. A. Kovalevskaya, O. I. Daneyko, and S. N. Kolupaeva, Effects of scale characteristics of a strengthening phase on the laws of plastic deformation of dispersion-hardened materials, Izv. Ross. Akad. Nauk, Ser. Fiz., 68, No. 10, 1412–1418 (2004).

  7. T. A. Kovalevskaya and O. I. Daneyko, Formation of the maximum strength of dispersion-hardened crystalline aluminum-based alloys containing incoherent particles, Izv. Ross. Akad. Nauk, Ser. Fiz., 85, No. 7, 1002–1007 (2021).

  8. O. I. Daneyko, T. A. Kovalevskaya, T. A. Shalygina, and V. G. Simonenko, Effects of incoherent nanosized particles on the annihilation of dislocation in heterophased aluminum matrix crystalline alloys, Izv. Vyssh. Uchebn. Zaved., Fiz., 64, No. 10 (767), 98–103 (2021).

  9. O. I. Daneyko, T. A. Kovalevskaya, S. N. Kolupaeva, N. A. Kulaeva, and M. E. Semenov, Effects of temperature and velocity of deformation on the evolution of the dislocation structure of a dispersion-hardened material with a FCC matrix, Izv. Vyssh. Uchebn. Zaved., Fiz., 54, No. 9, 37–40 (2011).

  10. T. A. Kovalevskaya and O. I. Daneyko, Effects of the scale characteristics of a strengthening phase on the formation of a plastic shear zone in heterophased alloys with disperse incoherent particles, Izv. Vyssh. Uchebn. Zaved., Fiz., 62, No. 12 (744), 81–87 (2019).

  11. O. I. Daneyko and T. A. Kovalevskaya, Effects of temperature on the mechanical properties of dispersion-hardened crystalline materials with incoherent nanosized particles, Izv. Vyssh. Uchebn. Zaved., Fiz., 61, No. 9 (729), 120–127 (2018).

  12. O. Matvienko, O. Daneyko, T. Kovalevskaya, A. Khrustalyov, I. Zhukov, and A. Vorozhtsov, Investigation of stresses induced due to the mismatch of the coefficients of thermal expansion of the matrix and the strengthening particle in aluminum-based composites, Metals, 11, No. 2, 1-20 (2021); https://doi.org/10.3390/met11020279.

    Article  CAS  Google Scholar 

  13. O. V. Matvienko, O. I. Daneyko, and T. A. Kovalevskaya, Investigation into the plastic deformation of a thickwalled tube from an alloy hardened with incoherent nanoparticles, Izv. Vyssh. Uchebn. Zaved., Fiz., 60, No. 2, 35–45 (2017).

  14. O. V. Matvienko, O. I. Daneyko, and T. A. Kovalevskaya, The stress–strain state of a loaded tube from an alloy hardened with incoherent nanoparticles, Izv. Vyssh. Uchebn. Zaved., Fiz., 60, No. 4, 7–13 (2017).

  15. O. V. Matvienko, O. I. Daneyko, and T. A. Kovalevskaya, Investigation into the formation of a dislocation structure of a tube from an alloy hardened with incoherent nanoparticles loaded with uniform internal pressure, Izv. Vyssh. Uchebn. Zaved., Fiz., 60, No. 7, 133–141 (2017).

  16. R. L. Davydov and L. U. Sultanov, Numerical algorithm for investigating large elasto-plastic deformations, J. Eng. Phys. Thermophys., 88, No. 5, 1280–1288 (2015).

    Article  Google Scholar 

  17. S. I. Rakin, Numerical verifi cation of the existence of the elastic energy localization effect for closely spaced rigid disks, J. Eng. Phys. Thermophys., 87, No. 1, 246–252 (2014).

    Article  Google Scholar 

  18. V. N. Bakulin, E. N. Volkov, and A. Ya. Nedbai, Dynamic stability of a cylindrical shell reinforced by longitudinal ribs and a hallow cylinder under the action of axial forces, J. Eng. Phys. Thermophys., 89, No. 3, 747–753 (2016).

    Article  Google Scholar 

  19. V. N. Bakulin, E. V. Danilkin, and A. Ya. Nedbai, Dynamic stability of a cylindrical shell stiffened with a cylinder and longitudinal diaphragms at external pressure, J. Eng. Phys. Thermophys., 91, No. 2, 537–543 (2018).

    Article  Google Scholar 

  20. V. N. Bakulin and A. Ya. Nedbai, Dynamic stability of a composite cylindrical shell with linear-variable thickness under pulsed external pressure, J. Eng. Phys. Thermophys., 94, No. 2, 525–533 (2021).

    Article  Google Scholar 

  21. Yu. M. Pleskachevskii and Yu. A. Chigareva, Limiting states of a microlayered plate in brittle and ductile fracture due to the change in the temperature fi eld, J. Eng. Phys. Thermophys., 91, No. 6, 1583–1591 (2018).

    Article  Google Scholar 

  22. B. V. Nerubailo and N. B. Nerubailo, Applicability of the St.Venant principle in the theory of thin elastic envelopes under the effect of force and temperature, J. Eng. Phys. Thermophys., 72, No. 2, 348–363 (1999).

  23. B. V. Nerubailo, On the infl uence of the physicomechanical properties of the anisotropic material of thermoelastic shells on their stressed state, J. Eng. Phys. Thermophys., 92, No. 4, 1081–1086 (2019).

    Article  Google Scholar 

  24. B. V. Nerubailo, Toward numerical solution of the problem on stressed state of thermoelastic physically orthotropic cylindrical shells, J. Eng. Phys. Thermophys., 93, No. 1, 241–246 (2020).

    Article  Google Scholar 

  25. V. S. Surov, Toward calculation of elastoplastic deformation of a solid body of the hybrid Godunov method and by the multidimensional nodal method of characteristics, J. Eng. Phys. Thermophys., 95, No. 3, 830–845 (2022).

    Article  Google Scholar 

  26. I. A. Birger and N. I. Koterov, Strength Calculation for Aircraft Gas-Turbine Engines [in Russian], Mashinostroenie, Moscow (1984).

  27. I. V. Dem′yanushko and E. F. Koroleva, Optimal design of turbomachine disks, Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 2, 176–180 (1972).

  28. I. V. Dem′yanushko and I. A. Birger, Strength Calculation in Rotating Disks [in Russian], Mashinostroenie, Moscow (1978).

  29. N. N. Malinin, Calculation of a rotating nonuniformly-heated disk of variable thickness, Inzh. Sbornik, 17, 151–163 (1953).

    Google Scholar 

  30. U. Gamer, Tresca’s yield condition and the rotating disk, Trans. ASME, J. Appl. Mech., 50, 676–678 (1983).

  31. M. A. Artemov and A. P. Yakubenko, Mathematical modeling of the mechanical behavior of a rotating disk, Vestn. Voronezhsk. Gos. Univ., Ser.: Fiz. Mat., No. 1, 30–38 (2014).

  32. E. Lomakin, S. Alexandrov, and Y. R. Jeng, Stress and strain fi elds in rotating elastic/plastic annular discs, Arch. Appl. Mech., 86, 235-244 (2016).

    Article  ADS  Google Scholar 

  33. O. V. Matvienko, O. I. Daneyko, and T. A. Kovalevskaya, Residual stresses in a tube from an alloy hardened with incoherent nanoparticles after relief from an elastoplastic state, Izv. Vyssh. Uchebn. Zaved., Fiz., 61, No. 4, 113–124 (2018).

  34. O. V. Matvienko, O. I. Daneyko, and T. A. Kovalevskaya, Effects of the dimensions of strengthening nanoparticles on residual stresses in a dispersion-hardened alloy tube, Izv. Vyssh. Uchebn. Zaved., Fiz., 61, No. 5, 140–150 (2018).

  35. O. V. Matvienko, O. I. Daneyko, and T. A. Kovalevskaya, Elastoplastic deformation of a dispersion-hardened aluminum tube exposed to external pressure, Izv. Vyssh. Uchebn. Zaved., Fiz., 61, No. 8, 138–145 (2018).

  36. O. V. Matvienko, O. I. Daneyko, and T. A. Kovalevskaya, Stress–strain state of a heterophase alloy tube exposed to internal pressure in an inhomogeneous temperature fi eld, Izv. Ross. Akad. Nauk, Ser.: Fiz., 85, No. 7, 1017–1024 (2021); https://doi.org/10.31857/S0367676521070152.

  37. O. Matvienko, O. Daneyko, and T. Kovalevskaya, Mathematical modeling of nanodispersed hardening of FCC materials, Acta Metallurgica Sinica (English Letters), 31, No. 12, 1297–1304 (2018); https://doi.org/10.1007/s40195-018-0754-0.

    Article  CAS  Google Scholar 

  38. O. Matvienko, O. Daneyko, and T. Kovalevskaya, Mathematical modeling of plastic deformation of a tube from dispersion-hardened aluminum alloy, MATEC Web Conf., 243, 00008-1-00008-6 (2018); https://doi.org/10.1051/matecconf/201824300008.

  39. O. Matvienko, O. Daneyko, and T. Kovalevskaya, Mathematical modeling of plastic deformation of a tube from dispersion-hardened aluminum alloy in an inhomogeneous temperature fi eld, Crystals, 10, 1103-1–1103-18 (2020); https://doi.org/10.3390/cryst10121103.

  40. O. V. Matvienko, O. I. Daneiko, and T. A. Kovalevskaya, Investigation into the effects of temperature distribution on the stress–strain state of the walls of a dispersion-hardened alloy tube, Fundam. Probl. Sovrem. Materialoved., 17, No. 3, 330–337 (2020); https://doi.org/10.25712/ASTU.1811-1416.2020.03.008.

  41. A. G. Gorshkov, É. I. Starovoitov, and D. V. Tarlakovskii, Theory of Elasticity and Plasticity [in Russian], Fizmatlit, Moscow (2002).

  42. O. V. Matvienko, O. I. Daneyko, and T. A. Kovalevskaya, Plastoelastic deformation of a dispersion-hardened aluminum tube exposed to external and internal pressure, Izv. Vyssh. Uchebn. Zaved., Fiz., 62, No. 4, 144–151 (2019).

  43. O. V. Matvienko, O. I. Daneyko, and T. A. Kovalevskaya, The stressed state of the wall of a dispersion-hardened aluminum exposed to external and internal pressure, Izv. Vyssh. Uchebn. Zaved., Fiz., 62, No. 10, 50–57 (1019).

  44. O. V. Matvienko, O. I. Daneyko, and T. A. Kovalevskaya, The stressed state of the walls of a composite dispersionhardened aluminum tube exposed to internal pressure, Izv. Vyssh. Uchebn. Zaved., Fiz., 63, No. 5 (749), 64–73 (2020).

  45. O. V. Matvienko, O. I. Daneyko, and T. A. Kovalevskaya, Investigation of the formation of residual stresses after plastoelastic deformation of the walls of a dispersion-hardened alloy tube as a result of the action by external pressure, Vestn. Tomsk. Gos. Univ., Mat. Mekh., No. 72, 102–117 (2021); https://doi.org/10.17223/19988621/72/9.

  46. S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, McGraw Hill, New York (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Matvienko.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 97, No. 1, pp. 232–244, January–February, 2024.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matvienko, O.V., Daneyko, O.I. Investigation of the Plastic Deformation of a Rotating Disk from an Alloy Reinforced with Incoherent Nanoparticles. J Eng Phys Thermophy 97, 229–240 (2024). https://doi.org/10.1007/s10891-024-02888-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-024-02888-0

Keywords

Navigation