Skip to main content
Log in

Technical and Economic Assessment of the Use of Alternative Fuels from Waste at Thermal Electric Power Plants in Exchange for Traditional Fuels

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

A feasibility study was carried out for the transition of typical power engineering objects, differing in thermal capacities and electric powers, from traditional fuel (coal, natural gas, fuel oil) to the combustion of biomass, composite liquid fuel, and generator gas. Three options for producing generator gas during gasification of biomass, composite liquid fuel, and coal were studied cash flows were calculated for the transition of each of the power plants under consideration to alternative fuel and the payback period for such a transition. Relative indicators of the efficiency of the generator gas were determined taking into account a set of significant parameters: heat of combustion, fuel consumption, anthropogenic emissions, ash residue, maximum combustion temperature, minimum ignition temperature, combustion initiation delay time, cost, technical and economic indicators of storage, transportation and fuel combustion, fire and explosion safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Zhuang, J. Liu, Q. Zhang, C. Wang, H. Zhan, and L. Ma, A review on the utilization of industrial biowaste via hydrothermal carbonization, Renew. Sustain. Energy Rev., 154, Article ID 111877 (2022).

  2. S. Z. Zhiznin and V. M. Timokhov, Energy impact on sustainable development, World Econ. Int. Rel., 61, No. 11, 34–42 (2017).

    Google Scholar 

  3. BP Statistical Review of World Energy, London (2020).

  4. H. Niu, Y. Ren, X. Qin, and X. Gao, Low-carbon environmental economic development based on fuzzy comprehensive algorithm, Environ. Technol. Innov., 22, Article ID 101413 (2021).

  5. H. Liu, L. Fan, and Z. Shao, Threshold effects of energy consumption, technological innovation, and supply chain management on enterprise performance in China's manufacturing industry, J. Environ. Manage., 300, Article ID 113687 (2021).

  6. B. Zhu and T. Zhang, The impact of cross-region industrial structure optimization on economy, carbon emissions and energy consumption: A case of the Yangtze River Delta, Sci. Total Environ., 778, Article ID 146089 (2021).

  7. T. Bhaskar, R. Ruan, Y. K. Park, H. Yang, and G. Chen, Pyrolysis, combustion and gasification of biomass (PCGB-2020), Bioresour. Technol. Reports, 313, Article ID 123803 (2020).

  8. S. Heberlein, W. P. Chan, A. Veksha, A. Giannis, L. Hupa, and G. Lisak, High temperature slagging gasification of municipal solid waste with biomass charcoal as a greener auxiliary fuel, J. Hazard. Mater., 423, Article ID 127057 (2022).

  9. A. Srishti, J. Janelle, L. Ming, L. Xian, G. Abhimanyu, C. Jialing, S. Shuang, C. Anderson, D. Chen, L. Ken, H. L. Song, S. L. Fong, S. Ghosh, A. Lin, H. W. Kua, H. T. W. Tan, Y. Dai, and C.-H. Wang, Gasification biochar from horticultural waste: An exemplar of the circular economy in Singapore, Sci. Total Environ., 781, Article ID 146573 (2021).

  10. H. Zhou, R. Bhattarai, Y. Li, B. Si, X. Dong, T. Wang, and Z. Yao, Towards sustainable coal industry: Turning coal bottom ash into wealth, Sci. Total Environ., 804, Article ID 149985 (2022).

  11. A. D. Nikitin, G. S. Nyashina, A. F. Ryzhkov, and P. A. Strizhak, Anthropogenic emissions from the combustion of composite coal-based fuels, Sci. Total Environ., 772, Article ID 144909 (2021).

  12. M. A. Kurgankina, G. S. Nyashina, and P. A. Strizhak, Prospects of thermal power plants switching from traditional fuels to coal–water slurries containing petrochemicals, Sci. Total Environ., 671, 568–577 (2019).

    Article  Google Scholar 

  13. N. Abdoulmoumi ne, S. Adhi kari, A. Kulkar ni, and S. Chattanathan, A review on biomass gasification syngas cleanup, Appl. Energy., 155, 294–307 (2015).

  14. S. Hurley, C. Xu, F. Preto, Y. Shao, H. Li, J. Wa ng, and G. Tourigny, Catalytic gasification of woody biomass in an airblown fluidized-bed reactor using Canadian limonite iron ore as the bed material, Fuel, 91, 170–176 (2012).

  15. P. J. Wool cock and R. C. Brown, A review of cleaning technologies for biomass-derived syngas, Biomass Bioenergy, V0l. 52, 54–84 (2013).

  16. P. Ha sler and Th. Nussbaumer, Gas cleaning for IC engine applications from fixed bed biomass gasification, Biomass Bioenergy, 16, No. 6, 385–395 (1999).

  17. M. A. Dmitrienko and P. A. Strizhak, Environmentally and economically efficient utilization of coal processing waste, Sci. Total Environ., 598, 21–27 (2017).

    Article  Google Scholar 

  18. M. A. Dmitrienko, P. A. Strizhak, and Yu. S. Tsygankova, Technoeconomic analysis of prospects of use of organic coalwater fuels of various component compositions, Chem. Petrol. Eng., 53, Nos. 3–4, 195–202 (2017).

    Article  Google Scholar 

  19. M. A. Dmitrienko and P. A. Strizhak, Coal–water slurries containing petrochemicals to solve problems of air pollution by coal thermal power stations and boiler plants: An introductory review, Sci. Total Environ.., 613–614, 1117–1129 (2018).

    Article  Google Scholar 

  20. V. M. Kislov, M. V. Tsvetkov, A. Yu. Zaichenko, D. N. Podlesniy, and E. A. Salgansky, Energy efficiency of the gasification of a dense layer of solid fuels in the filter combustion mode, Russ. J. Phys. Chem. B., 15, 819–826 (2021).

    Article  Google Scholar 

  21. I. I. Lishtvan, V. M. Dudarchik, V. M. Kraiko, E. V. Anufrieva, and E. A. Smolyachkova, Utilization of polymer wastes by joint pyrolysis with peat to produce high-calorific gas, Solid Fuel Chem., 51, No. 5, 273–277 (2017).

    Article  Google Scholar 

  22. A. A. Belyaev, Autothermal gasification of low-grade fuels in fluidized bed, Therm. Eng., 56, No. 1, 9–14 (2009).

    Article  Google Scholar 

  23. D. A. Svishchev and A. V. Keiko, A thermodynamic analysis of operating conditions under which coal–water fuel is gasified in flow, Therm. Eng., 57, No. 6, 490–494 (2010).

    Article  Google Scholar 

  24. A. V. Zhuikov and A. I. Matiushenko, Methods for producing and practical use of synthesis gas (review), J. Siber. Fed. Univ. Eng. Technol., 13, No. 4, 383–405 (2020).

    Article  Google Scholar 

  25. V. M. Zaichenko, A. Y. Krylova, and Y. M. Faleeva, Two-stage thermal conversion of straw and sugarcane bagasse with the production of synthesis gas, Solid Fuel Chem., 54, No. 2, 115–119 (2020).

    Article  Google Scholar 

  26. H. Cui, S. Q. Turn, V. Keffer, D. Evans, T. Tran, and M. Foley, Contaminant estimates and removal in product gas from biomass steam gasification, Energy Fuels, 24, No. 2, 1222–1233 (2010).

    Article  Google Scholar 

  27. L. Han, G. Deng, Z. Li, P. Liu, and Y. Fan, Influences of syngas pretreatment on the performance and energy distribution in an IGCC power plant, Chem. Eng. Res. Design, 131, 117–126 (2018).

    Article  Google Scholar 

  28. K. Panos and K. Margarete, Power and Energy Systems Engineering Economic, Springer (2018).

  29. A. Kumar, B. Sah, A. R. Singh, Y. Deng, X. He, P. Kumar, and R. C. Bansal, A review of multi criteria decision making (MCDM) towards sustainable renewable energy development, Renew. Sustain. Energy Rev., 69, 596–609 (2017).

    Article  Google Scholar 

  30. B. Haddad, A. Liazid, and P. Ferreira, A multi-criteria approach to rank renewables for the Algerian electricity system, Renew. Energy, 107, 462–472 (2017).

    Article  Google Scholar 

  31. P. Madhu, C. Sowmya Dhanalakshmi, and M. Mathew, Multi-criteria decision-making in the selection of a suitable biomass material for maximum bio-oil yield during pyrolysis, Fuel, 277, Article ID 118109 (2020).

  32. N. H. Afgan and M. G. Carvalho, Multi-criteria assessment of new and renewable energy power plants, Energy, 27, 739–755 (2002).

    Article  Google Scholar 

  33. E. W. Stein, A comprehensive multi-criteria model to rank electric energy production technologies, Renew. Sustain. Energy Rev., 22, 640–654 (2013).

    Article  Google Scholar 

  34. D. O. Glushkov, G. S. Nyashina, R. Anand, and P. A. Strizhak, Composition of gas produced from the direct combustion and pyrolysis of biomass, Process Safety Environ. Protect., 156, 43–56 (2021).

    Article  Google Scholar 

  35. D. Glushkov, G. Nyashina, V. Medvedev, and K. Vershinina, Relative environmental, economic, and energy performance indicators of fuel compositions with biomass, Appl. Sci., 10, No. 6, Article ID 2092 (2020).

  36. M. A. Kurgankina, G. S. Nyashina, and P. A. Strizhak, Advantages of switching coal-burning power plants to coal–water slurries containing petrochemicals, Appl. Therm. Eng., 147, 998–1008 (2019).

    Article  Google Scholar 

  37. H. B. Levinsky, S. Gersen, M. H. Rothink, and G. H. J. van Dijk, Progress towards a method for ranking gases for knock resistance using ignition delay times, in: Proc. Int. Gas Union Res. Conf., Paris (2008).

  38. M. Kay feci, A. Keç ebaş, and M. Bayat, Solar hydrogen production, Process. Systems Technol. Hydrogen Product, 45–83 (2019).

  39. J. Hinrichs, M. Hellmuth, F. Meyer, S. Kruse, M. Plümke, and H. Pitsch, Investigation of nitric oxide formation in methane, methane/propane, and methane/hydrogen flames under condensing gas boiler conditions, Appl. Energy Combust. Sci., 5, Article ID 100014 (2021).

  40. M. Khosravy El Hossaini, Review of the New Combustion Technologies in Modern Gas Turbines, IntechOpen; doi: https://doi.org/10.5772/54403.

  41. H. Kokabi, M. Naja fi, S. A. Jazaye ri, and O. Jahanian, Hydrogen and propane implications for reactivity controlled compression ignition combustion engine running on landfill gas and diesel fuel, Int. J. Hydrogen Energy., 46, No. 62, 31903–31915 (2021).

  42. M. Gumus, Effects of volumetric efficiency on the performance and emissions characteristics of a dual fueled (gasoline and LPG) spark ignition engine, Fuel Process. Technol., 92, No. 10, 1862–1867 (2011).

    Article  Google Scholar 

  43. World Nuclear Association Website; https://world-nuclear.org/.

  44. A. Sepman, E. Thorin, Y. Ögren, C. Ma, M. Carlborg, J. Wennebro, and F. M. Schmidt, Laser-based detection of methane and soot during entrained-flow biomass gasification, Combust. Flame, 237 (2022); doi: https://doi.org/10.1016/j.combustflame.2021.111886.

  45. Global Petrol Prices; com. https://www.globalpetrolprices.com/.

  46. Y. Ji, S. Zhang, K. Wang, and G. Qi, Study on combustion and nitrogen oxide emissions of gas boiler, IOP Conf. Ser.: Mater. Sci. Eng., 721, Article ID 012054 (2020).

  47. J. A. de Gouw, D. D. Parrish, G. J. Frost, and M. Trainer, Reduced emissions of CO2, NOx, and SO2 from U.S. power plants owing to switch from coal to natural gas with combined cycle technology, Earth's Future, 2, No. 2, 75–82 (2014).

  48. S. T. Coelho and J. Goldemberg, Alternative transportation fuels: Contemporary case studies in: The Encyclopedia of Energy, (2004), 67–80.

  49. K. Y. Vershinina, N. E. Shlegel, and P. A. Strizhak, Recovery of waste-derived and low-grade components within fuel slurries, Energy, 183, 1266–1277 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Vysokomornaya.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 96, No. 7, pp. 1816–1828, November–December, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vysokomornaya, O.V., Kurgankina, M.A. & Shvets, A.S. Technical and Economic Assessment of the Use of Alternative Fuels from Waste at Thermal Electric Power Plants in Exchange for Traditional Fuels. J Eng Phys Thermophy 96, 1782–1794 (2023). https://doi.org/10.1007/s10891-023-02848-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-023-02848-0

Keywords

Navigation