Skip to main content
Log in

Plane Wave Reflection in a Memory-Dependent Nonlocal Magnetothermoelastic Electrically Conducting Triclinic Solid Half-Space

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

In this paper, the memory-dependent nonlocal magnetothermoelasticity theory is used for the reflection problem in a magnetized electrically conducting thermo-triclinic solid half-space. The velocity equation is derived by formulating and solving the governing equations for a triclinic magnetothermoelastic medium according to the memory-dependent derivative nonlocalized thermoelasticity. Three quasi-plane waves, namely, quasi-longitudinal displacement (qP), quasi-thermal (qT), and quasi-shear vertical (qSV) waves, propagate in the medium according to the plane-wave solution. The wave velocities are calculated. For the incidence of a coupled quasi-plane wave, the equations for the reflection coefficient and energy ratio are derived. These characteristics are presented graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. C. Eringen, Nonlocal polar elastic continua, Int. J. Eng. Sci., 10, 1–16 (1972).

    Article  MathSciNet  Google Scholar 

  2. A. C. Eringen, Theory of nonlocal thermoelasticity, Int. J. Eng. Sci., 12, 1063–1077 (1974).

    Article  Google Scholar 

  3. A. C. Eringen, Nonlocal Continuum Theories, Springer, New York (2002).

    Google Scholar 

  4. Y. J. Yu, X. G. Tian, and X. R. Liu, Nonlocal thermoelasticity based on nonlocal heat conduction and nonlocal elasticity, Eur. J. Mech. A/Sol., 60, 238–253 (2016).

    Article  MathSciNet  Google Scholar 

  5. K. Wang and B. Wang, Vibration modelling of carbon-nanotube-based biosensors incorporating thermal and nonlocal effects, J. Vib. Control, 22, No. 5, 1405–1414 (2016).

    Article  MathSciNet  Google Scholar 

  6. C. Cattaneo, On a form of heat equation which eliminates the paradox of instantaneous propagation, C. R. Acad. Sci. Paris, 247, 431–433 (1958).

    MathSciNet  Google Scholar 

  7. K. Diethelm, Analysis of Fractional Differential Equation. An Application-Oriented Exposition Using Differential Operators of Caputo Type, Springer-Verlag, Berlin, Heidelberg (2010).

    Book  Google Scholar 

  8. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London (2010).

    Book  Google Scholar 

  9. J. L. Wang and H. F. Li, Surpassing the fractional derivative: Concept of the memory dependent derivative, Comput. Math. Appl., 62, No. 3, 1562–1567 (2011); doi: https://doi.org/10.1016/j.camwa.2011.04.028.

    Article  MathSciNet  Google Scholar 

  10. M. A. Ezzat, A. S. El-Karamany, and A. A. El-Bary, Generalized thermo-viscoelasticity with memory-dependent derivatives, Int. J. Mech. Sci., 89, 470–475 (2014).

    Article  Google Scholar 

  11. M. A. Ezzat, A. S. El-Karamany, and A. A. El-Bary, A novel magneto-thermoelasticity theory with memory-dependent derivative, J. Electromagn. Waves Appl., 29, No. 8, 1018–1031 (2015).

    Article  Google Scholar 

  12. M. A. Ezzat, A. S. El-Karamany, and A. A. El-Bary, Modeling of memory-dependent derivatives in generalized thermoelasticity, Eur. Phys. J. Plus, 131, Article ID 372 (2016).

  13. R. S. Dhaliwal and H. H. Sherief, Generalized thermoelasticity for anisotropic media, Quart. Appl. Math., 33, 1–8 (1980).

    Article  MathSciNet  Google Scholar 

  14. H. W. Lord and Y. Shulman, A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solids, 15, 299–309 (1967).

    Article  Google Scholar 

  15. J. Wang and R. S. Dhaliwal, Uniqueness in generalized nonlocal thermoelasticity, J. Therm. Stresses, 16, 71–77 (1993).

    Article  MathSciNet  Google Scholar 

  16. B. Singh and A. K. Yadav, Plane waves in a rotating monoclinic magnetothermoelastic medium, J. Eng. Phys. Thermophys., 89, 428–440 (2016).

    Article  Google Scholar 

  17. M. Zilmer, D. Gajewski, and B. M. Kashtan, Reflection coefficients for weak anisotropic media, Geophys. J. Int., 129, Issue 2, 389–398 (1997).

    Article  Google Scholar 

  18. T. Mensch and P. Rasolofosaon, Elastic wave velocities in anisotropic media of arbitrary symmetry — Anisotropy generalization of Thomsen's parameters ε, δ and γ, Geophys. J. Int., 128, Issue 1, 43–63 (1997).

    Article  Google Scholar 

  19. A. Chattopadhyay, Wave reflection and refraction in triclinic crystalline media, Arch. Appl. Mech., 73, 568–579 (2004).

    Article  Google Scholar 

  20. A. Chattopadhyay, Wave reflection in triclinic crystalline media, Arch. Appl. Mech., 76, 65–74 (2006).

    Article  Google Scholar 

  21. A. Chattopadhyay, Reflection for three-dimensional plane waves in triclinic crystalline medium, Appl. Math. Mech., 28, No. 10, 1309–1318 (2007).

    Article  MathSciNet  Google Scholar 

  22. B. Singh and A. K. Yadav, Plane waves in a transversely isotropic rotating magnetothermoelastic medium, J. Eng. Phys. Thermophys., 85, 1226–1232 (2012).

    Article  Google Scholar 

  23. B. Singh and A. K. Yadav, Reflection of plane waves in a rotating transversely isotropic magneto-thermoelastic solid half-space, J. Theor. Appl. Mech., 42, No. 3, 33–60 (2012).

    Article  MathSciNet  Google Scholar 

  24. A. K. Yadav, Magnetothermoelastic waves in a rotating orthotropic medium with diffusion, J. Eng. Phys. Thermophys., 94, 1663–1672 (2021).

    Article  Google Scholar 

  25. P. Zhang and T. He, A generalized thermoelastic problem with nonlocal effect and memory-dependent derivative when subjected to a moving heat source, Waves Random Complex Media, 30, Issue 1, 142–156 (2020); doi: https://doi.org/10.1080/17455030.2018.1490043.

    Article  MathSciNet  Google Scholar 

  26. A. K. Yadav, Reflection of plane waves in a fraction-order generalized magneto-thermoelasticity in a rotating triclinic solid half-space, Mech. Adv. Mater. Struct., 1–18 (2021); doi: https://doi.org/10.1080/15376494.2021.1926017.

  27. S. Biswas, Modeling of memory-dependent d erivatives in orthotropic medium with three-phase-lag model under the effect of magnetic field, Mech. Based Des. Struct. Mach., 47, No. 3, 302–318 (2019); doi: https://doi.org/10.1080/15397734.2018.1548968.

    Article  Google Scholar 

  28. M. Bachher and N. Sarkar, Nonlocal theory of thermoelastic materials with voids and fractional derivative heat transfer, Waves Random Complex Media, 29, Issue 4, 595–613 (2019); doi: https://doi.org/10.1080/17455030. 2018.1457230.

    Article  MathSciNet  Google Scholar 

  29. Iqbal Kaur, Parveen Lata, and Kulvinder Singh, Reflection and refraction of plane wave in piezo-thermoelastic diffusive half spaces with three phase lag memory dependent derivative and two-temperature, Waves Random Complex Media, 32, Issue 5, 2499–2532 (2022); doi:https://doi.org/10.1080/17455030.2020.1856451.

    Article  MathSciNet  Google Scholar 

  30. N. Sarkar and S. De, Reflection of thermoelastic plane waves at a stress-free insulated solid boundary with memorydependent derivative, Indian J. Phys., 95, No. 6, 1203–1211 (2021); https://doi.org/https://doi.org/10.1007/s12648-020-01788-2.

    Article  Google Scholar 

  31. Nihar Sarkar, Soumen De, Narayan Das, and Nantu Sarkar, Reflection of thermoelastic waves from the insulated surface of a solid half-space with time-delay, J. Heat Transf., 142, No. 9 (2020); doi:https://doi.org/10.1115/1.4046924.

  32. J. D. Achenbach, Wave Propagation in Elastic Solids, North-Holland Publishing Company, Amsterdam (1973).

    Google Scholar 

  33. B. A. Auld, Acoustic Fields and Waves in Solids, Vol. 1, Krieger Publishing Company, Malabar, Florida, USA (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Yadav.

Additional information

Published in Inzhenerno-Fizicheskii Zhurnal, Vol. 96, No. 6, pp. 1669–1684, November–December, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, A.K., Schnack, E. Plane Wave Reflection in a Memory-Dependent Nonlocal Magnetothermoelastic Electrically Conducting Triclinic Solid Half-Space. J Eng Phys Thermophy 96, 1658–1673 (2023). https://doi.org/10.1007/s10891-023-02836-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-023-02836-4

Keywords

Navigation