Skip to main content
Log in

Heat Transfer and Hydraulic Losses of Tube Bundles with Vortex Generators Indented on their Surface

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Using the methods of computational fluid dynamics, an investigation has been conducted into convective heat transfer by a bundle of tubes with heat transfer enhancers in the form of a system of spherical dimples made on their outer surface. The presence of enhancers changes the structure of the flow and turbulizes it in the vicinity of dimples, which can lead to a reduction in the length of the wake behind the tube bundle and to a decrease in hydraulic losses due to this. Prospects are shown for the use of enhancers to raise the thermal and aerodynamic efficiency of tube bundles at their various arrangements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. A. Popov, Kh. M. Makhyanov, and V. M. Gureev (Yu. F. Gortyshov Ed.), Physical Foundations and Commercial Application of Heat Transfer Enhancement. Heat Enhancement: A Monograph [in Russian], Tsentr Innovatsionnykh Tekhnologii, Kazan’ (2009).

  2. G. Eiff el, Experiences sur la resistance de lair, Comptes Rendus., 137, 30–32 (1903).

  3. M. Van Dyke, An Album of Fluid Motion [Russian translation], Mir, Moscow (1986).

  4. H. Schlichting, Boundary-Layer Theory [Russian translation], Nauka, Moscow (1974).

  5. R. Deeb, Integration and analysis of the results of the latest investigations in the area of improving heat transfer and hydrodynamics characteristics in transverse flow around smooth tubes, Tepl. Prots. Tekh., 13, No. 2, 50–69 (2021).

    MathSciNet  Google Scholar 

  6. E. N. Pis’mennyi, Efficient heat exchange surfaces from plane-oval tubes with incomplete finning, Teploénergetika, No. 4, 7–12 (2011).

  7. V. B. Kuntysh, A. B. Sukhotskii, and A. É. Piir, Investigation of the heat transfer and resistance of staggered bundles of air-cooled heat exchangers of tubes with knurled aluminum fins of various heights, Khim. Neftegaz. Mashinostr., No. 12, 3–7 (2010).

  8. L. Prandtl, Hydro- and Aeromechanics [in Russian], NITs "Regulyarnaya i Khaoticheskaya Dinamika," Izhevsk (2000).

  9. L. D. Landau and E. M. Lifshits, Hydrodynamics. Theoretical Physics, in 10 vols. [in Russian], Vol. 6, Nauka, Moscow (1986).

  10. N. Yurchenko, R. River, and R. Pavlovsky, Control of the profile aerodynamics using streamwise vortices generated in a boundary layer, Proc. World Congress "Aviation in the XXIst Century," Kyiv, Ukraine (2003), pp. 14–16.

  11. E. K. Kalinin, G. A. Dreitser, I. Z. Kopp, and A. S. Myakotchin, Efficient Surfaces for Heat Exchangers. Fundamentals and Design, New York (2002).

    Google Scholar 

  12. Yu. F. Gortyshov, I. A. Popov, V. V. Olimpiev, A. V. Shchelchkov, and S. I. Kas′kov (Yu. F. Gortyshov Ed.), Thermohydraulic Efficiency of Advanced Methods of Heat Transfer Enhancement in Channels of Heat Exchange Equipment. Transfer Enhancement: a Monograph [in Russian], Tsentr Innovatsionnykh Tekhnologii, Kazan′ (2009).

  13. S. A. Isaev, P. A. Baranov, Yu. F. Gortyshov, S. V. Guvernyuk, A. B. Mazo, M. Yu. Smurov, A. G. Sudakov, A. E. Usachov, and V. B. Kharchenko, Aerodynamics of Thickened Bodies with Vortex Cells. Numerical and Physical Modeling, Polytechnic University Publishing House, St. Petersburg (2016).

  14. S. A. Isaev, A. I. Leontiev, N. A. Kudryavtsev, P. A. Baranov, and Yu. V. Zhukova, Enhancement of vortex heat transfer in a bundle of transverse tubes with ordered trenches, J. Eng. Phys. Thermophys., 78, No. 1, 115–126 (2005).

    Article  Google Scholar 

  15. P. Chang, Separation of Flows (in 3 vol.) [Russian translation], Mir, Moscow (1972).

  16. P. Saff man, Vortex Dynamics, Cambridge University Press, Cambridge (1993); doi: 16.1017/CBO9780511624063.

  17. A. Roshko, On the Drag and Shedding Frequency of Bluff Cylinders, National Advisory Committee for Aeronautics, Technical Note 3169, Washington (1954).

  18. T. Igarashi, Correlation between heat transfer and fluctuating pressure in separated region of a circular cylinder, Int. J. Heat Mass Transf., 27, Issue 6, 927–937 (1984).

    Article  Google Scholar 

  19. V. Zhdanov, I. Kukharchuk, and V. Terekhov, Velocity field behind a plate installed in the inner region of a turbulent boundary layer, J. Eng. Phys. Thermophys., 93, No. 5, 1233–1239 (2020).

    Article  Google Scholar 

  20. T. A. Baranova, V. L. Zhdanov, Yu. V. Zhukova, and S. A. Isaev, Reduction of resistance and heat transfer enhancement in flow past a cylinder with jet and vortex generators, Heat Transf. Res., 41, No. 4, 401–411 (2010).

    Article  Google Scholar 

  21. A. A. Zhukauskas, Convective Transfer in Heat Exchangers [in Russian], Mir, Moscow (1982).

  22. T. A. Baranova, E. S. Danil′chik, Yu. V. Zhukova, R. G. Kadyrov, G. S. Marshalova, A. A. Mironov, I. A. Popov, A. N. Skrypnik, and A. D. Chorny, Resistance and heat transfer of a single tube with surface vortex generators, Tepl. Prots. Tekh., 13, No. 11, 495–508 (2021).

    Google Scholar 

  23. I. A. Popov, Yu. V. Zhukova, T. A. Baranova, P. T. Kadyrov, A. A. Mironov, G. S. Marshalova, A. N. Skrypnik, E. S. Danilchik, and A. D. Chorny, Thermal-hydraulic performance of a single round tube with surface vortex generators, Heat Transf. Res., 53, Issue 9, 29–41 (2022); doi: https://doi.org/10.1615/HeatTransRes.2022041164.

    Article  Google Scholar 

  24. R. G. Kadyrov, I. A. Popov, G. S. Marshalova, and Yu. V. Zhukova, Eff ects of surface vortex generators on thermohydraulic characteristics of transverse flow bundles of heat exchange tubes, Tepl. Prots. Tekh., 14, No. 6, 243–254 (2022); https://doi.org/10.34759/tpt-2022-14-6-243-254.

    Article  Google Scholar 

  25. G. I. Kiknadze, I. A. Gachechiladze, and V. V. Alekseev, Self-Organization of Tornado-Like Jets in Flows of Viscous Continuous Media and Heat and Mass Transfer Enhancement Accompanying This Phenomenon [in Russian], Izd. MÉI, Moscow (2005).

  26. M. Ya. Belen′kii, M. A. Gotovskii, B. M. Lekakh, B. S. Fokin, and V. B. Khabenskii, Experimental investigation into thermal and hydraulic characteristics of heat exchange surfaces indented with spherical dimples, Teplofiz. Vys. Temp., 29, No. 6, 1142–1147 (1991).

    Google Scholar 

  27. Yu. A. Bystrov, S. A. Isaev, N. A. Kudryavtsev, and A. I. Leontiev, Numerical Simulation of Vortex Enhancement of Heat Transfer in Tube Banks [in Russian], Sudostroenie, St. Petersburg (2005).

  28. P. A. Durbin and B. A. Pettersson-Reif, Statistical Theory and Modeling for Turbulent Flows, Wiley (2001).

  29. F. R. Menter, M. Kuntz, and R. Langtry, Ten years of industrial experience with the SST turbulence model, in: K. Hanjalic, Y. Nagano, and M. Tummers (Eds.), Turbulence, Heat and Mass Transfer, Begell House, Inc. (2003).

  30. A. A. Zhukauskas, V. I. Makaryavichyus, and A. A. Shlanchyauskas, Heat Transfer of Tube Bundles in Transverse Flow [in Russian], Izd. "Mintis," Vilnius (1968).

  31. N. V. Kuznetsov, A. V. Shcherbakova, and E. Ya.Titova, New computing formulas for resistance of transverse flow tube bundles, Teploénergetika, No. 9, 27–32 (1954).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Popov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 96, No. 6, pp. 1586–1602, November–December, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popov, I.A., Zhukov, Y.V., Baranova, T.A. et al. Heat Transfer and Hydraulic Losses of Tube Bundles with Vortex Generators Indented on their Surface. J Eng Phys Thermophy 96, 1576–1592 (2023). https://doi.org/10.1007/s10891-023-02829-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-023-02829-3

Keywords

Navigation