Skip to main content
Log in

Influence of the Rheological Properties of a Polymer Melt on the Hydrodynamic Characteristics of its Vortex Flow in a Convergent Channel

  • TRANSFER PROCESSES IN RHEOLOGICAL MEDIA
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The influence of the temperature of the flow of a polymer melt in a plane, convergent slot channel on the size of the vortex-flow region at the inlet of its slot part was considered. The fields of velocities, stresses, and pressure of the flow of a polymer melt in such a channel were constructed with the use of the modified Vinogradov–Pokrovskii model generalized with regard for the nonmonotonic dependence of the viscosity gradient of this melt on its tension. The dependences of the initial viscosity of the polymer melt and the sizes of its vortex flow region in the channel on the temperature in it and the dependence of the sizes of the vortex zone of the polymer-melt flow on its rate were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. I. Borzenko and G. R. Shrager, Flow of a non-Newtonian liquid with a free surface, J. Eng. Phys. Thermophys., 89, No. 4, 902–910 (2016).

    Article  Google Scholar 

  2. E. I. Borzenko and O. A. D′yakova, Power-low fluid in a T-shaped channel under the action of assigned pressure drop, J. Eng. Phys. Thermophys., 92, No. 3, 694–702 (2019).

  3. D. Hertel, R. Valette, and H. Münstedt, Three-dimensional entrance flow of a low-density polyethylene (LDPE) and a linear low-density polyethylene (LLDPE) into a slit die, J. Non-Newtonian Fluid Mech., 153, 82–94 (2008).

    Article  Google Scholar 

  4. D. Hertel and H. Münstedt, Dependence of the secondary flow of a low-density polyethylene on processing parameters as investigated by laser-Doppler velocimetry, J. Non-Newtonian Fluid Mech., 153, 73–81 (2008).

    Article  Google Scholar 

  5. E. Mitsoulis, M. Schwetz and H. Münstedt, Entry flow of LDPE melts in a planar contraction, J. Non-Newtonian Fluid Mech., 111, 41–61 (2003).

    Article  Google Scholar 

  6. A. C. Papanastasiou, L. E. Scriven, and C. W. Macosko, An integral constitutive equation for mixed flows: Viscoelastic characterization, J. Rheol., 27, 387–410 (1983).

    Article  Google Scholar 

  7. P. Olley, An adaptation of the separable KBKZ equation for comparable response in planar and axisymmetric flow, J. Non-Newtonian Fluid Mech., 95, 35–53 (2000).

    Article  MATH  Google Scholar 

  8. A. I. Leonov and A. N. Prokunin, Nonlinear Phenomena in Flows of Viscoelastic Polymer Fluids, Chapman and Hall, New York (1994), pp. 356–395.

    Book  Google Scholar 

  9. T. C. B. McLeish and R. G. Larson, Molecular constitutive equations for a class of branched polymers: The pom–pom polymer, J. Rheol., 42, 81–110 (1998).

    Article  Google Scholar 

  10. G. W. M. Peters, J. F. M. Schoonen, F. P. T. Baaijens, and H. E. H. Meijer, On the performance of enhanced constitutive models for polymer melts in a cross-slot flow, J. Non-Newtonian Fluid Mech., 82, 387–427 (1999).

    Article  MATH  Google Scholar 

  11. W. M. H. Verbeeten, G. W. M. Peters, and F. P. T. Baaijens, Differential constitutive equations for polymer melts: The extended Pom–Pom model, J. Rheol., 45, 823–843 (2001).

    Article  Google Scholar 

  12. G. V. Pyshnograi, V. N. Pokrovskii, Yu. G. Yanovskii, I. F. Obraztsov, and Yu. A. Obraztsov, Constitutive equation for nonlinear (polymer) media in the zero approximation with respect to the molecular-theory parameters and implications for the shear and the tension, Dokl. Akad. Nauk, 335, No. 9, 612–615 (1994).

    Google Scholar 

  13. G. V. Pyshnograi, A. S. Gusev, and V. N. Pokrovskii, Constitutive equations for weakly entangled linear polymers, J. Non-Newtonian Fluid Mech., 163, Nos. 1–3, 17–28 (2009).

    Article  Google Scholar 

  14. V. N. Pokrovskii, The Mesoscopic Theory of Polymer Dynamics, 2nd edn., Springer, Berlin (2010).

    Book  Google Scholar 

  15. A. S. Gusev, M. A. Makarova, and G. V. Pyshnograi, Mesoscopic equation of state of polymer systems and description of the dynamic characteristics based on it, J. Eng. Phys. Thermophys., 78, No. 5, 892–898 (2005).

    Article  Google Scholar 

  16. M. A. Makarova, A. S. Malygina, G. V. Pyshnograi, and G. O. Rudakov, Simulation of the rheological properties of polyethylene melts in the process of their monoaxial tension, Vych. Mekh. Sploshn. Sred, 13, No. 1, 73–82 (2020).

    Google Scholar 

  17. K. B. Koshelev, G. V. Pyshnograi, and M. Yu. Tolstykh, Simulation of the three-dimensional flow of a polymer melt in a convergent channel with a rectangular cross section, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 3, 16–24 (2015).

  18. N. A. Cherpakova, G. V. Pyshnograi, and I. G. Pyshnograi, Flows of a nonlinear non-Newtonian liquid with the slipstick conditions on a solid wall, AIP Conf. Proc. (2020); https://doi.org/10.1063/5.0003563.

    Article  Google Scholar 

  19. D. A. Merzlikina, G. V. Pyshnograi, R. Pivokonskii, and P. Filip, Rheological model for describing viscometric flows of melts of branched polymers, J. Eng. Phys. Thermophys., 89, No. 3, 652–659 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Pyshnograi.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 96, No. 5, pp. 1186–1194, September–October, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudakov, G.O., Pyshnograi, G.V., Vaitsel’, D.É. et al. Influence of the Rheological Properties of a Polymer Melt on the Hydrodynamic Characteristics of its Vortex Flow in a Convergent Channel. J Eng Phys Thermophy 96, 1178–1186 (2023). https://doi.org/10.1007/s10891-023-02783-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-023-02783-0

Keywords

Navigation