Skip to main content
Log in

RANS and LES Computations of Natural Convection in a Square Cavity

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Turbulent natural convection (Ra = 1.58·109) in a confined 3D square cavity with two differentially heated side walls are simulated numerically using the in-house EDF code (Code_Saturne) based on the unstructured finite volume solver. The objective of the present work is to investigate the performance of the low-Reynolds-number models known by their good suitability for the near-wall treatment. The low-Reynolds-number models, shear stress transport (SST) kω model, φ–f model which is a developed version of the original \({\overline{\upsilon }}^{2}\) f model, and the LES (large-eddy simulation) technique are used, and the results of their using are compared with the experimental benchmark data. The numerical results show quantitative and qualitative agreements. In general, the SST kω model gives good predictions for the temperature profiles, and the φ –f model is more accurate for the velocity profile prediction. This is mainly due to the good resolution of the turbulence properties in the near-wall region and to the ability to mimic the physical flow features in this type of geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Mergui and F. Penot, Natural convection in a differentially heated square cavity: Experimental investigation at Ra = 1.69 · 109, Int. J. Heat Mass Transf., 39, No. 3, 563–574 (1996); https://doi.org/10.1016/0017-9310(95)00133-T.

  2. P. L. Betts and I. H. Bokhari, Experiments on turbulent natural convection in an enclosed tall cavity, Int. J. Heat Fluid Flow, 21, No. 6, 675–683 (2000); https://doi.org/https://doi.org/10.1016/S0142-727X(00)00033-3.

    Article  Google Scholar 

  3. Y. S. Tian and T. G. Karayiannis, Low turbulence natural convection in an air filled square cavity. Part I: The thermal and fluid flow fields, Int. J. Heat Mass Transf., 43, No. 6, 849–866 (2000); https://doi.org/10.1016/S0017-9310(99)00199-4.

  4. Y. S. Tian and T. G. Karayiannis, Low turbulence natural convection in an air filled square cavity. Part II: The turbulence quantities, Int. J. Heat Mass Transf., 43, No. 6, 867–884 (2000); https://doi.org/10.1016/S0017-9310(99)00200-8.

  5. J. Salat, S. Xin, P. Joubert, A. Sergent, F. Penot, and P. Le Quéré, Experimental and numerical investigation of turbulent natural convection in a large air-filled cavity, Int. J. Heat Fluid Flow, 25, No. 5, 824–832 (2004); https://doi.org/https://doi.org/10.1016/j.ijheatfluidflow.2004.04.003.

    Article  Google Scholar 

  6. F. Ampofo, Turbulent natural convection of air in a non-partitioned or partitioned cavity with differentially heated vertical and conducting horizontal walls, Exp. Therm. Fluid Sci., 29, Issue 2, 137–157 (2005).

    Article  Google Scholar 

  7. F. Ampofo and T. G. Karayiannis, Experimental benchmark data for turbulent natural convection in an air filled square cavity, Int. J. Heat Mass Transf., 46, No. 19, 3551–3572 (2003); https://doi.org/https://doi.org/10.1016/S0017-9310(03)00147-9.

    Article  Google Scholar 

  8. G. de Vahl Davis, Natural convection of air in a square cavity: A benchmark numerical solution, Int. J. Numer. Methods Fluids, 3, No. 3, 249–264 (1983); http://dx.doi.org/https://doi.org/10.1002/fld.1650030305.

  9. N. C. Markatos and K. A. Pericleous, Laminar and turbulent natural convection in an enclosed cavity, Int. J. Heat Mass Transf., 27, No. 5, 755–772 (1984); http://dx.doi.org/https://doi.org/10.1016/0017-9310(84)90145-5.

    Article  MATH  Google Scholar 

  10. R. A. W. M. Henkes, F. F. van der Vlugt, and C. J. Hoogendoorn, Natural convection flow in a square cavity calculated with low-Reynolds-number turbulence models, Int. J. Heat Mass Transf., 34, No. 2, 377–388 (1991); https://doi.org/https://doi.org/10.1016/0017-9310(91)90258-g.

    Article  Google Scholar 

  11. K. Hanjalić, S. Kenjereš, and F. Durst, Natural convection in partitioned two-dimensional enclosures at higher Rayleigh number, Int. J. Heat Mass Transf., 39, No. 7, 1407–1427 (1996); https://doi.org/https://doi.org/10.1016/0017-9310(95)00219-7.

    Article  MATH  Google Scholar 

  12. P. Le Quéré and M. Behnia, From onset of unsteadiness to chaos in a differentially heated square cavity, J. Fluid Mech., 359, 81–107 (1998); https://doi.org/https://doi.org/10.1017/S0022112097008458.

    Article  MathSciNet  MATH  Google Scholar 

  13. S. H. Peng and L. Davidson, Computation of turbulent buoyant flows in enclosures with low-Reynolds-number k–ω models, Int. J. Heat Fluid Flow, 20, No. 2, 172–184 (1999); https://doi.org/https://doi.org/10.1016/S0142-727X(98)10050-4.

    Article  Google Scholar 

  14. H. S. Dol and K. Hanjalić, Computational study of turbulent natural convection in a side-heated near-cubic enclosure at a high Rayleigh number, Int. J. Heat Mass Transf., 44, No. 12, 2323–2344 (2001); https://doi.org/https://doi.org/10.1016/S0017-9310(00)00271-4.

    Article  MATH  Google Scholar 

  15. K. J. Hsieh and F. S. Lien, Numerical modelling of buoyancy-driven flows in enclosures, Int. J. Heat Fluid Flow, 25, No. 4, 659–670 (2004); https://doi.org/https://doi.org/10.1016/j.ijheatfluidflow.2003.11.023.

    Article  Google Scholar 

  16. H. S. Peng and L. Davidson, Large eddy simulation for turbulent buoyant flow in a confined cavity, Int. J. Heat Fluid Flow, 22, No. 3, 323–331 (2001); https://doi.org/https://doi.org/10.1016/S0142-727X(01)00095-9.

    Article  Google Scholar 

  17. J. Pallares, I. Cuesta, and F. X. Gran, Laminar and turbulent Rayleigh–Bénard convection in perfectly conducting cubical cavity, Int. J. Heat Fluid Flow, 23, No. 3, 346–358 (2002); https://doi.org/https://doi.org/10.1016/S0142-727X(02)00182-0.

    Article  Google Scholar 

  18. A. Sergent, P. Joubert, and P. Le Quéré, Development of a local subgrid diffusivity model for large-eddy simulation of buoyancy-driven flows: Application to a square differentially heated cavity, Numer. Heat Transf. A: Appl., 44, No. 8, 789–810 (2003); https://doi.org/https://doi.org/10.1080/716100524.

    Article  Google Scholar 

  19. J. Z. Zhai, Z. Zhang, W. Zhang, and Q. Chen, Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD: Part 1 — Summary of prevalent turbulence models, HVAC&R Res., 13, No. 6, 853–870 (2007); http://dx.doi.org/https://doi.org/10.1080/10789669.2007.10391459.

    Article  Google Scholar 

  20. Z. Zhang, W. Zhang, Z. J. Zhai, and Q. Y. Chen, Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD: Part 2 — Comparison with experimental data from literature, HVAC&R Res., 13, No. 6, 871–886 (2007); http://dx.doi.org/https://doi.org/10.1080/10789669.2007.10391460.

    Article  Google Scholar 

  21. L. El Moutaouakil, Z. Zrikem, and A. Abdelbaki, Performance of various RANS eddy-viscosity models for turbulent natural convection in tall vertical cavities, Heat Mass Transf., 50, No. 8, 1103–1113 (2014); https://doi.org/https://doi.org/10.1007/s00231-014-1322-4.

    Article  Google Scholar 

  22. P. C. Walsh and W. H. Leong, Effectiveness of several turbulence models in natural convection, Int. J. Numer. Methods Heat Fluid Flow, 14, No. 5, 633–648 (2004); https://doi.org/https://doi.org/10.1108/09615530410539955.

    Article  MATH  Google Scholar 

  23. C. E. Clifford and M. L. Kimber, Assessment of RANS and LES turbulence models for natural convection in a differentially heated square cavity, Numer. Heat Transf. A: Appl., 78, No. 10, 1–35 (2020); https://doi.org/https://doi.org/10.1080/10407782.2020.1803592.

    Article  Google Scholar 

  24. F. R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J., 32, No. 8, 1598–1605 (1994); https://doi.org/https://doi.org/10.2514/3.12149.

    Article  Google Scholar 

  25. Laurence, J. C. Uribe, and S. Utyuzhnikov, A robust formulation of the \({\overline{\upsilon }}^{2}\)f model, Flow Turbul. Combust., 73, No. 3, 169–185 (2004); https://doi.org/10.1007/s10494-005-1974-8.

  26. P. A. Durbin, Near-wall turbulent closure modeling without damping functions, Theor. Comput. Fluid Dyn., 3, No. 1, 1–13 (1991); https://doi.org/https://doi.org/10.1007/BF00271513.

    Article  MATH  Google Scholar 

  27. P. A. Durbin, Separated flow computations with the k–ε–υ2 model, AIAA J., 33, No. 4, 659–664 (1995); https://doi.org/https://doi.org/10.2514/3.12628.

    Article  Google Scholar 

  28. J. Smagorinsky, General circulation experiments with the primitive equations. I: The basic experiment, Mon. Weather Rev., 91, No. 3, 99–165 (1963); https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

  29. E. R. van Driest, On turbulent flow near a wall, J. Aeronaut. Sci., 23, No. 11, 1007–1011 (1956); https://doi.org/https://doi.org/10.2514/8.3713.

    Article  MATH  Google Scholar 

  30. F. Archambeau, N. Méchitoua, and M. Sakiz, Code_Saturne: A finite volume code for the computation of turbulent incompressible flows — Industrial applications, Int. J. Finite Vol., 1, No. 1, 1–62 (2004); https://hal.archives-ouvertes.fr/hal-01115371.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tayeb Yahiaoui.

Additional information

Published in Inzhenerno-Fizicheskii Zhurnal, Vol. 96, No. 4, pp. 1017–1027, July–August, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belharizi, M., Khorsi, A., Yahiaoui, T. et al. RANS and LES Computations of Natural Convection in a Square Cavity. J Eng Phys Thermophy 96, 1017–1027 (2023). https://doi.org/10.1007/s10891-023-02765-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-023-02765-2

Keywords

Navigation