Skip to main content
Log in

On the Velocity of Propagation of a Flame in a Coal–Methane–Air Suspension

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

A numerical investigation of the velocity of propagation of a flame in the coal dust suspended in a poor methane–air mixture has been performed with the use of the two-velocity model of a two-phase reactive disperse gas medium. It is shown that the presence of a small amount of methane in the air in which a coal dust is suspended increases the velocity of propagation of a flame in the air suspension. An increase in the size of the coal-dust particles suspended in a poor methane–air mixture ambiguously influences the velocity of propagation of a flame in it: the velocity of a flame in a methane–air mixture containing a small amount of coal particles decreases and the velocity of a flame in such a mixture with a large amount of coal particles increases with increase in their size concentration. The ranges of application of the model of combustion of a coal–methane–air mixture, developed, were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kalyakin, V. Kostenko, E. Zavyalova, and L. Shtrokh, Influence of the impurities of mine combustible Gases on the explosibility of coal aerosols, in: Proc. Second Sci.-Tech. Conf. on the Topical Problems of Control over the Mountain Danger, 7–9 November 2012, Brenna (2012), Nos. 7–9, pp. 176–184.

  2. D. Bradley, M. Lawes, M. J. Scott, and N. Usta, The structure of coal–air–CH4 laminar flames in a low-pressure burner: CARS measurements and modeling studies, Combust. Flame, 124, Nos. 1–2, 82–105 (2001).

    Article  Google Scholar 

  3. S. R. Rockwell and A. S. Rangwala, Influence of coal dust on premixed turbulent methane–air flames, Combust. Flame, 160, 635–640 (2013).

    Article  Google Scholar 

  4. A. M. Baklanov, S. V. Valiulin, S. N. Dubtsov, V. V. Zamashchikov, V. I. Klishin, A. E. Kontorovich, A. A. Korzhavin, A. A. Onishchuk, D. Yu. Paleev, and P. A. Purtov, Nanoaerosol fraction in the technogenic coal dust and its influence on the explosion hazard of coal–methane–air mixtures, Dokl. Akad. Nauk, 461, No. 3, 295–299 (2015).

    Google Scholar 

  5. D. Torrado, V. Buitrago, P. A. Glaude, and O. Dufaud, Explosions of methane/air/nanoparticles mixtures: Comparison between carbon black and inert particles, Process Safety Environ. Protect., 110, 77–88 (2017).

    Article  Google Scholar 

  6. D. Torrado, A. Pinilla, M. Amin, C. Murillo, F. Munoz, P. A. Glaude, and O. Dufaud, Numerical study of the influence of particle reaction and radiative heat transfer on the flame velocity of gas/nanoparticles hybrid mixtures, Process Safety Environ. Protect., 118, 211–226 (2018).

    Article  Google Scholar 

  7. A. V. Fedorov, D. A. Tropin, O. G. Penyazkov, V. V. Leshchevich, and S. Yu. Shimchenko, Theoretical and experimental study of chemical transformations of a methane–hydrogen–coal particles mixture in a rapid-compression machine, J. Eng. Phys. Thermophys., 90, No. 4, 781–788 (2017).

    Article  Google Scholar 

  8. V. V. Leshchevich, O. G. Penyazkov, and S. Yu. Shimchenko, Ignition of coal microparticles in an air atmosphere and their influence on the inflammation of methane, J. Eng. Phys. Thermophys., 93, No. 4, 1004–1014 (2020).

    Article  Google Scholar 

  9. A. A. Dement'ev, A. Yu. Krainov, and K. M. Moiseeva, On the influence of the concentration of the combustible in a hybrid gas suspension on the velocity of propagation of the front of its combustion, Vestn. Tomsk. Gos. Univ., Mat. Mekh., No. 5(37), 55–64 (2015).

  10. A. A. Dement'ev, K. M. Moiseeva, A. Yu. Krainov, and D. Yu. Paleev, Comparison of the results of modeling the flame propagation in a hybrid gas suspension with experimental data, J. Eng. Phys. Thermophys., 89, No. 6, 1514–1521 (2016).

    Article  Google Scholar 

  11. A. Yu. Krainov and K. M. Moiseeva, Modeling of the flame propagation in coal–dust–methane air mixture in an enclosed sphere volume, J. Phys.: Conf. Ser., 754, Article ID 052003 (2016).

  12. K. M. Moiseeva and A. Yu. Krainov, The burning rate of coal–dust–air suspension, J. Phys.: Conf. Ser., 1261, Article ID 012023 (2019).

  13. K. M. Moiseeva, A. Yu. Krainov, and D. A. Krainov, Numerical investigation on burning rate of propane–air mixture, IOP Conf. Ser.: Mater. Sci. Eng., 696, Article ID 012011 (2019).

  14. K. M. Moiseeva, A. Yu. Krainov, and A. Kantarbaeva, Numerical determination of the combustion rate of a gas suspension of coal dust in a propane–air mixture, J. Phys.: Conf. Ser., 2057, Article ID 012065 (2021).

  15. K. G. Shkadinskii and V. V. Barzykin, Mechanisms of the ignition of gases by a hot surface with account of the diffusion and hydrodynamics, Fiz. Goren. Vzryva, 4, No. 2, 176–181 (1968).

    Google Scholar 

  16. R. K. Eckhoff, Dust Explosions in the Process Industries, Gulf Professional Publishing (2003).

  17. R. I. Nigmatulin, Dynamics of Multiphase Media [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  18. B. Lewis and G. von Elbe, Combustion, Flames, and Explosions of Gases [Russian translation], Mir, Moscow (1968).

    Google Scholar 

  19. D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  20. Handbook on Heat Exchangers, in 4 vols., Vol. 1 [in Russian], Énergoatomizdat, Moscow (1987).

  21. S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, and G. P. Prokopov, Numerical Solution of Multidimensional Problems on Gas Dynamics [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  22. A. N. Kraiko, On the discountinuity surfaces in a medium free of "intrinsic" pressure, Prikl. Mat. Mekh., 43, No. 3, 500–510 (1979).

    MathSciNet  Google Scholar 

  23. K. M. Moiseeva and A. Yu. Krainov, Spark Ignition of Combustible Gases and Gas Suspensious [in Russian], STT, Tomsk (1987).

  24. A. Yu. Krainov and K. M. Moiseeva, Modeling of the combustion of a methane–air mixture in an enclosed spherical volume, J. Eng. Phys. Thermophys., 91, No. 4, 918–924 (2018).

    Article  Google Scholar 

  25. A. Ya. Korol'chenko, Fire and Explosion Safety of Industrial Dusts [in Russian], Khimiya, Moscow (1986).

    Google Scholar 

  26. M. I. Netseplyaev, A. I. Liubimova, P. M. Petrukhin, and E. P. Ploskogolovyi, Coal Dust Explosion Control in Mines [in Russian], Nedra, Moscow (1992).

    Google Scholar 

  27. I. G. Assovskii, Combustion Physics and Internal Ballistics [in Russian], Nauka, Moscow (2005).

    Google Scholar 

  28. S. B. Romanchenko, Yu. F. Rudenko, and V. N. Kosterenko, Dust Dynamics in Coal Mines [in Russian], Gornoe Delo, Moscow (2011).

    Google Scholar 

  29. S. B. Romanchenko, A. N. Timchenko, V. N. Kosterenko, G. A. Pozdnyakov, Yu. F. Rudenko, V. B. Artemev, and K. N. Kopylov, Complex Dedusting [in Russian], Gornoe Delo, Moscow (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Moiseeva.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 96, No. 3, pp. 682–691, May–June, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moiseeva, K.M., Krainov, A.Y. & Krainov, D.A. On the Velocity of Propagation of a Flame in a Coal–Methane–Air Suspension. J Eng Phys Thermophy 96, 678–687 (2023). https://doi.org/10.1007/s10891-023-02729-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-023-02729-6

Keywords

Navigation