Skip to main content
Log in

Numerical Simulation of the Propagation of a Vortex Ring and of the Transfer of a Passive Impurity by it

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Numerical simulation of hydrodynamic processes accompanying the formation and propagation of vortex rings produced by a piston generator has been performed. The influence of the characteristics of a vortex ring on the transfer of a passive impurity is considered. Numerical calculations were carried out using nonstationary Navier– Stokes equations and adaptive grid structures. The geometric and dynamic characteristics of the vortex ring are obtained which correspond to the self-similar law of its dynamics and experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Lavrentiev and B. V. Shabat, Problems of Hydrodynamics and Their Mathematical Models [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  2. J. K. Batchelor, An Introduction to Fluid Dynamics [Russian translation], Mir, Moscow (1973).

    Google Scholar 

  3. A. H. M. Eisenga, Dynamics of a Vortex Ring in a Rotating Fluid, Technische Universiteit Eindhoven, Eindhoven (1997).

    Google Scholar 

  4. P. G. Saffman, The velocity of viscous vortex rings, Stud. Appl. Math., 49, 371–380 (1970).

    Article  MATH  Google Scholar 

  5. R. G. Galiullin, L. A. Tkachenko, S. E. Filippov, and É. R. Galiullina, Resonance oscillations of a gas in an open-end pipe in the turbulent regime, J. Eng. Phys. Thermophys., 77, No. 1, 132–137 (2004).

    Article  Google Scholar 

  6. S. M. Aul′chenko, Modeling of the mechanism of decreasing the hydrodynamic drag of bodies by the surface running wave method, J. Eng. Phys. Thermophys., 76, No. 6, 1221–1226 (2003).

    Article  Google Scholar 

  7. K. Shariff and A. Leonard, Vortex rings, Annu. Rev. Fluid Mech., 24, 235–279 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  8. D. G. Akhmetov and O. P. Kirsanov, Hydrodynamic structure of an annular vortex, Prikl. Mekh. Tekh. Fiz., No. 4, 120–124 (1966).

    Google Scholar 

  9. J. P. Sulivian, S. E. Widnall, and S. Ezekiel, Study of vortex rings using a laser doppler velocimeter, AIAA J., 11, No. 10, 1384–1389 (1973).

    Article  Google Scholar 

  10. D. G. Akhmetov, Formation and main parameters of vortex rings, Prikl. Mekh. Tekh. Fiz., 42, No. 5, 70–83 (2001).

    Google Scholar 

  11. D. G. Akhmetov, Model of formation of a vortex ring, Prikl. Mekh. Tekh. Fiz., 49, No. 6, 25–36 (2008).

    MathSciNet  Google Scholar 

  12. A. Weigand and M. Garib, On the evolution of laminar vortex rings, Exp. Fluids, 22, No. 6, 447–457 (1997).

    Article  Google Scholar 

  13. Z. Sun, B. Pointz, and C. Bruecker, Transition of a vortex ring visualized by 3D scanning TomoPIV, Proc. 18th Int. Symp. on the Application of Laser and Imaging Techniques to Fluid Mechanics, 4–7 July 2016, Lisbon, Portugal (2016).

  14. T. Maxworthy, Some experimental studies of vortex rings, J. Fluid Mech., 81, 465–495 (1977).

    Article  Google Scholar 

  15. V. F. Kop′ev and S. A. Chernyshev, Oscillations of the vortex ring, occurrence of turbulence in it, and generation of sound, Usp. Fiz. Nauk, 170, No. 7, 713–742 (2000).

    Article  Google Scholar 

  16. K. Shariff , A. Leonard, and J. H. Ferziger, Dynamical systems analysis of fluid transport in time-periodic vortex ring flows, Phys. Fluids, 18, No. 4, Article ID 047104 (2006).

  17. M. Cheng, J. Lou, and T. T. Lim, Evolution of an elliptic vortex ring in a viscous fluid, Phys. Fluids, 28, Article ID 037104 (2016).

  18. M. Bergdorf, P. Koumoutsakos, and A. Leonard, Direct numerical simulations of vortex rings at ReΓ = 7500, J. Fluid Mech., 581, 495–505 (2007).

    Article  MATH  Google Scholar 

  19. P. J. Archer, T. G. Thomas, and G. N. Coleman, Direct numerical simulation of vortex ring evolution from the laminar to the early turbulent regime, J. Fluid Mech., 598, 201–226 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  20. J. R. Mansfield, O. M. Knio, and C. Meneveau, Dynamic LES of colliding vortex rings using a 3D vortex method, J. Comput. Phys., 152, No. 1, 305–345 (1999).

  21. K. Lindsay and R. Krasny, A particle method and adaptive treecode for vortex sheet motion in three-dimensional fl ow, J. Comput. Phys., 172, No. 2, 879–907 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  22. K. Kontis, R. An, and J. A. Edwards, Compressible vortex-ring studies with a number of generic body configurations, AIAA J., 44, No. 12, 2962–2978 (2006).

    Article  Google Scholar 

  23. H. Zare-Behtash, K. Kontis, N. Gongora-Orozco, and K. Takayama, Compressible vortex loop: Effect of nozzle geometry, Int. J. Heat Fluid Flow, 30, No. 5, 561–576 (2009).

    Article  Google Scholar 

  24. T. Murugan, S. De, C. L. Dora, and D. Das, Numerical simulation and PIV study of compressible vortex ring evolution, Shock Waves, 22, No. 1, 69–83 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Kapranov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 95, No. 6, pp. 1516–1525, November–December, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkov, K.N., Emel’yanov, V.N. & Kapranov, I.E. Numerical Simulation of the Propagation of a Vortex Ring and of the Transfer of a Passive Impurity by it. J Eng Phys Thermophy 95, 1489–1497 (2022). https://doi.org/10.1007/s10891-022-02617-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-022-02617-5

Keywords

Navigation