Skip to main content
Log in

Toward the Temperature Dependence of the Young Modulus of Magnetic Materials

  • MISCELLANEA
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Using the example of a ferromagnetic dielectric, an algorithm is proposed for calculating the Young modulus of elastically deformable solid bodies on the basis of the Holstein–Primakov transformations and the theory of spin waves. Due to the method of averaging over the ground state of a magnetic, a general expression is obtained for the temperature dependence of the Young modulus in a wide temperature range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Landau and E. M. Lifshits, Electrodynamics of Continuous Media, Vol. 8 [in Russian], Nauka, Moscow (1982).

  2. A. I. Akhiezer, V. G. Bar′yakhtar, and S. V. Peletminskii, Spin Waves [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  3. G. Holsteint and H. Primakoff , Field dependence of the intrinsic domain magnetization of a ferromagnet, Phys. Rev., 8, Issue 2, 109–117 (1940).

    Google Scholar 

  4. A. Platsker and F. R. Morgenthaler, Phonon-pumped nuclear spin waves in a flopped antiferromagnet, Phys. Rev. Lett., 22, Issue 9, 1051–1057 (1969).

    Article  Google Scholar 

  5. Yu. A. Izyumov, F. A. Kassan-Ogly, and Yu. N. Skryabin, Field Methods in the Theory of Ferromagnetism [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  6. S. O. Gladkov and M. I. Kaganov, On the theory of relaxation of nuclear spins in ferromagnets, Zh. Éksp. Teor. Fiz., 80, Issue 4, 1577–1585 (1981).

    Google Scholar 

  7. É. M. Kartashov, Analytical solution of hyperbolic models of nonstationary heat conduction, Tonk. Khim. Tekhnol., 13, Issue 2, 81–90 (2018).

    Google Scholar 

  8. S. I. Luk′yanov, A. V. Bandura, and R. A. Évarestov, Temperature dependence of Young′s modulus of nanotubes based on titanium dioxide TiO2: Molecular mechanical modeling, Fiz. Tverd. Tela, 57, Issue 12, 2391–2399 (2015).

    Google Scholar 

  9. J. W. Marx and J. M. Sivertsen, Temperature dependence of the elastic moduli and internal friction of silica and glass, J. Appl. Phys., 24, Issue 1, 81–88 (1953).

    Article  Google Scholar 

  10. H. J. McSkimin, Measurement of elastic constants at low temperatures by means of ultrasonic waves — data for silicon and germanium single crystals, and for fused silica, J. Appl. Phys., 24, Issue 6, 988–994 (1953).

    Article  Google Scholar 

  11. S. Spinner, Temperature dependence of elastic constants of vitreous silica, J. Amer. Ceram. Soc., 45, Issue 4, 394–402 (1962).

    Article  Google Scholar 

  12. D. B. Fraser, Factors infl uencing the acoustic properties of vitreous silica, J. Appl. Phys., 39, Issue 10, 5868–5877 (1968).

    Article  Google Scholar 

  13. J. T. Krause, Variables aff ecting the acoustic loss and velocity of vitreous silica from 4 to 300 K, J. Appl. Phys., 42, Issue 8, 3035–3041 (1971).

    Article  Google Scholar 

  14. A. S. Goral′nik, M. N. Kul′bitskaya, and I. G. Mikhailov, On the temperature dependence of the speed of sound in pure and doped quartz glasses, Akust. Zh., XVIII, Issue 4, 391–398 (1972).

  15. V. A. Skripnikov, B. N. Sanin, and Yu. S. Balashov, Temperature dependence of the elastic moduli of quartz glass, Fiz. Khim. Stekla, 5, Issue 6, 675–680 (1979).

    Google Scholar 

  16. B. S. Lunin and S. N. Torbin, On the temperature dependence of Young′s modulus of pure quartz glasses, Vestn. Moskovsk. Univ., Ser. 2, Khimiya, 41, Issue 3, 172–173 (2000).

  17. L. D. Landau and E. M. Lifshits, Hydrodynamics, Vol. 6 [in Russian], Nauka, Moscow (1988).

  18. L. D. Landau and E. M. Lifshits, Theory of Elasticity [in Russian], Nauka, Moscow (1987).

    MATH  Google Scholar 

  19. S. O. Gladkov, On the microscopic nature of the Young modulus, J. Eng. Phys. Thermophys., 79, No. 4, 835–838 (2006).

    Article  Google Scholar 

  20. S. O. Gladkov, A contribution to the computation of the Young modulus, J. Eng. Phys. Thermophys., 76, No. 5, 1126–1130 (2003).

    Article  Google Scholar 

  21. S. O. Gladkov, On a transversality condition for one variation problem with moving boundary, J. Siberian Federal Univ. Math. Phys., 12, Issue 2, 125–129 (2019).

    MathSciNet  MATH  Google Scholar 

  22. S. V. Tyablikov, Methods of Quantum Theory of Magnetism [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  23. S. O. Gladkov, The kinetics of nuclear magnetically ordered systems, Phys. Rep., 182, Issues 4–5, 211–364 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Gladkov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 95, No. 4, pp. 1068–1073, July–August, 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gladkov, S.O., Kartashov, É.M. Toward the Temperature Dependence of the Young Modulus of Magnetic Materials. J Eng Phys Thermophy 95, 1051–1055 (2022). https://doi.org/10.1007/s10891-022-02565-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-022-02565-0

Keywords

Navigation