Skip to main content
Log in

Effect of the Shape of Pulses on Heat Transfer at the Stagnation Point of a Nonstationary Axisymmetric Impact Gas–Droplet Jet

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

A numerical investigation was carried out to study the influence of the shape of pulses (rectangular, triangular, and sinusoidal) on heat transfer at the stagnation point of an impact pulsed gas–droplet jet. It is shown that in a nonstationary two-phase impact jet both an increase and suppression of heat transfer are possible in comparison with stationary flow for all pulse shapes studied. In the region of small distances between the pipe cut and the barrier (up to four pipe diameters) in the pulsed gas–droplet jet, the heat transfer at the stagnation point increases, while at large distances (more than five pipe diameters), the heat transfer rate decreases in the pulsed flow. This is typical of all the pulse shapes studied in this work. An increase in the Reynolds number causes a decrease in heat transfer intensification, and the results of calculations for all types of signal shapes approach the stationary mode of a twophase impact jet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. P. Dyban and A. I. Mazur, Convective Heat Transfer in Jet Flow around Bodies [in Russian], Naukova Dumka, Kiev (1982).

    Google Scholar 

  2. A. S. Mujumdar, Impingement drying, in: A. S. Mujumdar (Ed.), Handbook of Industrial Drying, 3rd edn., Taylor & Francis Group, New York (2007), pp. 385–395.

    Google Scholar 

  3. M. Garbero, M. Vanni, and U. Fritsching, Gas/surface heat transfer in spray deposition processes, Int. J. Heat Fluid Flow, 27, 105–122 (2006).

    Article  Google Scholar 

  4. J. H. Kim, Spray cooling heat transfer: the state of the art, Int. J. Heat Fluid Flow, 28, 753–767 (2007).

    Article  Google Scholar 

  5. G. Liang and I. Mudawar, Review of spray cooling — Part 1: Single-phase and nucleate boiling regimes, and critical heat flux, Int. J. Heat Mass Transf., 115, 1174–1205 (2017).

    Article  Google Scholar 

  6. S. S. Makarov, A. M. Lipanov, and A. I. Karpov, Numerical investigation of heat transfer during the cooling of a metal cylinder by a flow of a gas–liquid medium in an air channel, J. Eng. Phys. Thermophys., 92, No. 4, 988–996 (2019).

    Article  Google Scholar 

  7. Yu. A. Buyevich and V. N. Mankevich, Cooling of a superheated surface with a jet mist flow, Int. J. Heat Mass Transf., 39, 2353–2362 (1996).

    Article  Google Scholar 

  8. X. Li, J. L. Gaddis, and T. Wang, Mist/steam heat transfer of confined slot jet impingement, ASME J. Turbomach., 123, 161–167 (2000).

    Article  Google Scholar 

  9. M. A. Pakhomov and V. I. Terekhov, Enhancement of an impingement heat transfer between turbulent mist jet and flat surface, Int. J. Heat Mass Transf., 53, 3156–3165 (2010).

    Article  Google Scholar 

  10. Z. Zhang, P.-X. Jiang, Y.-T. Hu, and J. Li, Experimental investigation of continual and intermittent-spray cooling, Exp. Heat Transf., 26, 453–469 (2013).

    Article  Google Scholar 

  11. F. N. M. Elwekeel and A. M. M. Abdala, Eff ects of mist and jet cross-section on heat transfer for a confined air jet impinging on a flat plate, Int. J. Thermal Sci., 108, 174–184 (2016).

    Article  Google Scholar 

  12. C. Khangembam, D. Singh, J. Handique, and K. Singh, Experimental and numerical study of air–water mist jet impingement cooling on a cylinder, Int. J. Heat Mass Transf., 150, Article ID 119368 (2020).

  13. M. R. O. Panao and A. L. N. Moreira, Thermo- and fl uid dynamics characterization of spray cooling with pulsed sprays, Exp. Thermal Fluid Sci., 30, 79–96 (2005).

    Article  Google Scholar 

  14. A. D. Nazarov, A. F. Serov, V. I. Terekhov, and K. A. Sharov, Experimental investigation of evaporative pulse-spray impingement cooling, J. Eng. Phys. Thermophys., 82, No. 6, 1184–1190 (2009).

    Article  Google Scholar 

  15. A. D. Nazarov, A. F. Serov, and V. I. Terekhov, Structure of the pulsed sprayed jet with a change in its frequency characteristics, Teplofi z. Vys. Temp., 49, No. 1, 116–121 (2011).

    Google Scholar 

  16. M. A. Pakhomov and V. I. Terekhov, Structure of fl ow and turbulent heat and mass transfer at the frontal point of an impact pulsed gas–droplet jet, Teplofi z. Vys. Temp., 52, No. 4, 588–596 (2014).

    Google Scholar 

  17. M. A. Pakhomov and V. I. Terekhov, RANS modeling of fl ow structure and turbulent heat transfer in pulsed gas–droplet mist jet impingement, Int. J. Thermal Sci., 100, 284–297 (2016).

    Article  Google Scholar 

  18. H. Herwig and G. Middelberg, The physics of unsteady jet impingement and its heat transfer performance, Acta Mechanica, 201, 171–184 (2008).

    Article  Google Scholar 

  19. L. P. Geng, C. B. Zheng, and J. W. Zhou, Heat transfer characteristics of impinging jets: The infl uence of unsteadiness with different waveforms, Int. Commun. Heat Mass Transf., 66, 105–113 ( 2015).

    Article  Google Scholar 

  20. M. A. Pakhomov and V. I. Terekhov, RANS simulation of the effect of pulses form on fluid flow and convective heat transfer in an intermittent round jet impingement, Energies, 13, Article ID 4025 (2020).

  21. H. M. Hofmann, D. L. Movileanu, M. Kind, and H. Martin, Influence of a pulsation on heat transfer and flow structure in submerged impinging jets, Int. J. Heat Mass Transf., 50, 3638–3648 (2007).

    Article  Google Scholar 

  22. S. Jahangiri, A. H. Shiravi, M. Hosseinalipour, and A. S. Mujumdar, Numerical study of the oscillation amplitude effect on the heat transfer of oscillatory impinging round jets, Numer. Heat Transf., Pt. B, 79, 70-82 (2021).

    Article  Google Scholar 

  23. T. J. Craft and B. T. Launder, New wall-reflection model applied to the turbulent impinging jet, AIAA J., 30, 2970–2972 (1992).

    Article  Google Scholar 

  24. V. I. Derevich and L. I. Zaichik, Settling of particles from a turbulent flow, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5, 96–104 (1988).

  25. M. W. Reeks, On a kinetic equation for the transport of particles in turbulent flows, Phys. Fluids A, 3, 446–456 (1991).

    Article  Google Scholar 

  26. L. I. Zaichik, A statistical model of particle transport and heat transfer in turbulent shear flows, Phys. Fluids, 11, 1521–1534 (1999).

    Article  Google Scholar 

  27. V. I. Derevich, Statistical modelling of mass transfer. 1. Model development, Int. J. Heat Mass Transf., 43, 3709–3724 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Pakhomov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 95, No. 4, pp. 1000–1005, July–August, 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pakhomov, M.A., Terekhov, V.I. Effect of the Shape of Pulses on Heat Transfer at the Stagnation Point of a Nonstationary Axisymmetric Impact Gas–Droplet Jet. J Eng Phys Thermophy 95, 985–990 (2022). https://doi.org/10.1007/s10891-022-02562-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-022-02562-3

Keywords

Navigation