Skip to main content
Log in

Influence of the Pressure and Composition of the Fuel Mixture on its Ignition by a Subcritical Streamer Discharge

  • HEAT AND MASS TRANSFER IN COMBUSTION PROCESSES
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Based on the data of a physical experiment, the possibility of increasing the efficiency of combustion of fuel in power plants with the use of a multipoint plasma ignition of a fuel mixture in a cylindrical combustion chamber of such an installation by a subcritical streamer discharge initiated on the combustion chamber surface by a half-wave resonator is discussed. The dependences of the flame front propagation time and the rate of pressure increase in the combustion chamber on the initial pressure and composition of the fuel mixture characterized by the fuel excess coefficient, were studied. Based on the results of measurements, the optimal fuel excess coefficient was determined, which provides the highest pressure and the highest rate of pressure increase in the combustion chamber during streamer ignition of fuel in it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Ju and W. Sun, Plasma assisted combustion: Dynamics and chemistry, Prog. Energy Combust. Sci., 48, 21–83 (2015).

    Article  Google Scholar 

  2. B. P. Viktorovich, About the detonation engine, Am. J. Appl. Sci., 11, No. 8, 1357–1364 (2014).

    Article  Google Scholar 

  3. J. Koch and J. N. Kutz, Modeling thermodynamic trends of rotating detonation engines, Phys. Fluids, 32, Article ID 126102 (2020).

  4. V. N. Uskov and P. V. Bulat, Shock and detonation wave in terms of view of the theory of interaction of gas-dynamic discontinuities, Life Sci. J., 11, No. 8, 307–310 (2014).

    Google Scholar 

  5. B. A. Rankin, M. L. Fotia, A. G. Naples, C. A. Stevens, J. L. Hoke, T. A. Kaemming, S. W. Theuerkauf, and F. R. Schauer, Overview of performance, application, and analysis of rotating detonation engine technologies, J. Propuls. Power, 33, No. 1, 131–143 (2017).

    Article  Google Scholar 

  6. Q. Xie, B. Wang, H. Wen, and P. Wolanski, Enhancement of continuously rotating detonation in hydrogen and oxygenenriched air, Proc. Combust. Inst., 37, 3425–3432 (2019).

    Article  Google Scholar 

  7. S. M. Frolov, V. S. Aksenov, V. S. Ivanov, and I. O. Shamshin, Large-scale hydrogen–air continuous detonation combustor, Int. J. Hydrogen Energy, 40, No. 3, 1616–1623 (2015).

    Article  Google Scholar 

  8. N. B. Zhao, H. T. Zheng, X. Y. Wen, N. B. Zhao, H. T. Zheng, X. Y. Wen, and D. M. Xiao, Thermodynamic performance enhancement of marine gas turbine by using detonation combustion, ASME Paper, Article ID 75493 (2018).

  9. P. Wolanski, Detonative propulsion, Proc. Combust. Inst., 34, 125–158 (2013).

    Article  Google Scholar 

  10. Y. Liu, X. Sun, V. Sethi, D. Nalianda, Y. G. Li, and L. Wang, Review of modern low emissions combustion technologies for aero-gas turbine engines, Prog. Aerospace Sci., 94, 12–45 (2017).

    Article  Google Scholar 

  11. Q. Xie, H. Wen, W. Li, Z. Ji, B. Wang, and P. Wolanski, Analysis of operating diagram for H2/air rotating detonation combustors under lean fuel condition, Energy, 151, 408–419 (2018).

    Article  Google Scholar 

  12. P. V. Bulat, I. I. Esakov, L. P. Grachev, P. V. Denisenko, M. P. Bulat, and I. A. Volobuev, Mathematical and computer simulation of combustion and detonation by a subcritial streamer discharge, Nauch.-Tekhn. Vestn. Inform. Tekhnol., Mekh. Opt., 17, No. 4, 569–592 (2017).

    Article  Google Scholar 

  13. M. P. Bulat, P. V. Bulat, P. V. Denissenko, I. I. Esakov, L. P. Grachev, K. N. Volkov, and I. A. Volobuev, Ignition of lean and stoichiometric air–propane mixture with a subcritical microwave streamer discharge, Acta Astronaut., 150, 153–161 (2018).

    Article  Google Scholar 

  14. M. L. Fotia, J. Hoke, and F. Schauer, Study of the ignition process in a laboratory scale rotating detonation engine, Exp. Therm. Fluid Sci., 94, 345–354 (2017).

    Article  Google Scholar 

  15. R. Bluemner, M. D. Bohon, C. O. Paschereit, and E. J. Gutmark, Single and counter-rotating wave modes in an RDC, AIAA Paper, Article ID 1608 (2018).

  16. J. Sousa, G. Paniagua, and E. C. Morata, Thermodynamic analysis of a gas turbine engine with a rotating detonation combustor, Appl. Energy, 195, 247–256 (2017).

    Article  Google Scholar 

  17. V. N. Uskov, P. V. Bulat, and L. P. Arkhipova, Classification of gas-dynamic discontinuities and their interference problems, Res. J. Appl. Sci., Eng. Technol., 8, No. 22, 2248–2254 (2014).

  18. P. V. Bulat and M. V. Chernyshev, Existence regions of shock wave triple configurations, Int. J. Environ. Sci. Educ., 11, No. 11, 4844–4854 (2016).

    Google Scholar 

  19. J. Gray, J. Vinkeloe, J. Moeck, and C. O. Paschereit, Thermodynamic evaluation of pulse detonation combustion for gas turbine power cycles, ASME Paper, Article ID 57813 (2016).

  20. J. C. Lisanti and W. L. Roberts, Design of an actively valved and acoustically resonant pulse combustor for pressuregain combustion applications, AIAA Paper, Article ID 0899 (2016).

  21. C. Xisto, F. Ali, O. Petit, T. Grönstedt, A. Rolt, and A. Lundbladh, Analytical model for the performance estimation of pre-cooled pulse detonation turbofan engines, ASME Paper, Article ID 63776 (2017).

  22. S. Chan and H. Liu, Mass-based design and optimization of wave rotors for gas turbine engine enhancement, Shock Waves, 27, 313–324 (2017).

    Article  Google Scholar 

  23. M. P. Bulat and P. V. Bulat, The analysis centric isentropic compression waves, World Appl. Sci. J., 27, No. 8, 1023–1026 (2013).

    Google Scholar 

  24. L. Peng, D. Wang, X. Wu, H. Ma, and C. Yang, Ignition experiment with automotive spark on rotating detonation engine, Int. J. Hydrogen Energy, 40, No. 26, 8465–8474 (2015).

    Article  Google Scholar 

  25. P. V. Denissenko, M. P. Bulat, I. I. Esakov, L. P. Grachev, K. N. Volkov, I. A. Volobuev, V. V. Upyrev, and P. V. Bulat, Ignition of premixed air/fuel mixtures by microwave streamer discharge, Combust. Flame, 202, 417–422 (2019).

    Article  Google Scholar 

  26. M. P. Bulat, P. V. Bulat, P. V. Denissenko, I. I. Esakov, L. P. Grachev, K. N. Volkov, and I. A. Volobuev, Ignition and combustion of air/fuel mixture in a long tube induced by microwave subcritical streamer discharge, Acta Astronaut., 150, 153–161 (2018).

    Article  Google Scholar 

  27. M. P. Bulat, P. V. Bulat, P. V. Denissenko, I. I. Esakov, L. P. Grachev, K. N. Volkov, and I. A. Volobuev, Experimental study of microwave streamer discharge ignition of premixed air/fuel mixtures, IEEE Trans. Plasma Sci., 47, No. 1, 57–61 (2019).

    Article  Google Scholar 

  28. A. Starikovskiy and N. Aleksandrov, Plasma-assisted ignition and combustion, Prog. Energy Combust. Sci., 39, 331–368 (2013).

    Article  Google Scholar 

  29. P. V. Bulat, O. P. Minin, and K. N. Volkov, Numerical simulation of optical breakdown in a liquid droplet induced by a laser pulse, Acta Astronaut., 150, 162–171 (2018).

    Article  Google Scholar 

  30. A. V. Emel′yanov, A. V. Eremin, and V. E. Fortov, Formation of a detonation wave in the process of chemical condensation of carbon nanoparticles, J. Eng. Phys. Thermophys., 83, No. 6, 1197–1209 (2010).

    Article  Google Scholar 

  31. K. N. Volkov, V. N. Emel′yanov, A. V. Efremov, and A. I. Tsvetkov, Gasdynamic and acoustic characteristics of a subsonic jet-edge rod generator of acoustic radiation, J. Eng. Phys. Thermophys., 93, No. 5, 1179–1190 (2020).

    Article  Google Scholar 

  32. K. V. Khodataev, The ignition of the combustion and detonation by the undercritical microwave discharge, AIAA Paper, Article ID 2941 (2001).

  33. M. P. Bulat, P. V. Bulat, P. V. Denissenko, I. I. Esakov, L. P. Grachev, K. N. Volkov, and I. A. Volobuev, Numerical simulation of ignition of premixed air/fuel mixtures by microwave streamer discharge, IEEE Trans. Plasma Sci., 47, No. 1, 62–68 (2019).

    Article  Google Scholar 

  34. P. V. Bulat, L. P. Grachev, I. I. Esakov, A. A. Ravaev, and L. G. Severinov, Microwave breakdown of air initiated by an electromagnetic vibrator placed on a dielectric surface, Zh. Tekh. Fiz., 89, No. 7, 1016–1020 (2019).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Grachev.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 95, No. 4, pp. 947–954, July–August, 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulat, P.V., Volkov, K.N., Grachev, L.P. et al. Influence of the Pressure and Composition of the Fuel Mixture on its Ignition by a Subcritical Streamer Discharge. J Eng Phys Thermophy 95, 931–938 (2022). https://doi.org/10.1007/s10891-022-02547-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-022-02547-2

Keywords

Navigation