Skip to main content
Log in

Influence of the Conductivity of Resonator Walls on the Characteristics of a Microwave Generator with a Virtual Cathode: Numerical Experiments

  • MISCELLANEA
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Using PIC simulation, the authors have carried out an investigation into the generation characteristics of a microwave generator with a virtual cathode as functions of the conductivity of the material of resonator walls. The dependence of the peak power of microwave generation in the resonator on the value of conductivity has been obtained which shows a decrease in the power with conductivity. No substantial change in the generation spectrum with variation of the conductivity has been found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Platt, B. Anderson, J. Christofferson, J. Enns, M. Haworth, J. Metz, P. Pelletier, R. Rupp, and D. Voss, Low-frequency, multigigawatt microwave pulses generated by a virtual cathode oscillator, Appl. Phys. Lett., 54, No. 13, 1215−1216 (1989).

    Article  Google Scholar 

  2. G. A. Huttlin, M. S. Bushell, D. B. Conrad, D. P. Davis, K. L. Ebersole, D. C. Judy, P. A. Lezcano, M. S. Litz, N. R. Pereira, B. G. Ruth, D. M. Weidenheimer, and F. J. Agee, The reflex-diode HPM source on Aurora, IEEE Trans. Plasma Sci., 18, No. 3, 618−625 (1990).

    Article  Google Scholar 

  3. R. F. Hoeberling and M. V. Fazio, Advances in virtual cathode sources, IEEE Trans. Electromagn. Compat., 34, No. 3, 252−258 (1992).

    Article  Google Scholar 

  4. A. A. Rukhadze, S. D. Stolbentsov, and V. P. Tarakanov, Vircators (review), Radiotekh. Élektron., 37, No. 3, 385–396 (1992).

    Google Scholar 

  5. A. E. Dubinov and V. D. Selemir, Electron devices with a virtual cathode, Radiotekh. Élektron., 47, No. 6, 645–672 (2002).

    Google Scholar 

  6. V. D. Selemir, B. V. Alekhin, V. E. Vatrunin, A. E. Dubinov, N. V. Stepanov, O. A. Shamro, and K. V. Shibalko, Theoretical and experimental investigations into the microwave devices with a virtual cathode, Fiz. Plazmy, 20, Nos. 7–8, 689–708 (1994).

    Google Scholar 

  7. V. D. Selemir, A. E. Dubinov, V. V. Voronin, and V. S. Zhdanov, Key ideas and main milestones of research and development of microwave generators with virtual cathode in RFNC-VNIIEF, IEEE Trans. Plasma Sci., 48, No. 6, 1860−1867 (2020).

    Article  Google Scholar 

  8. V. D. Selemir, A. E. Dubinov, B. G. Ptitsyn, A. A. Evseenko, V. A. Letyagin, R. K. Nurgaliev, V. G. Suvorov, and A. V. Sudovtsov, Influence of vacuum conditions on microwave generation in a vircator, Pis’ma Zh. Tekh. Fiz., 27, No. 22, 73–79 (2001).

    Google Scholar 

  9. A. Roy, R. Menon, V. Sharma, A. Patel, A. Sharma, and D. P. Chakravarthy, Features of 200 kV, 300 ns reflex triode vircator operation for different explosive emission cathodes, Laser Part. Beams, 31, No. 1, 45−54 (2013).

    Article  Google Scholar 

  10. E. Postacı, H. Erciyas, N. Y. A. Atmaca, Ö. Akman, S. Nesil, F. Yayıl, S. Berber, and S. Çakır, Performances of velvet cathodes with different geometries in a reflex triode vircator, IEEE Trans. Plasma Sci., 48, No. 10, 3565−3572 (2020).

    Article  Google Scholar 

  11. A. E. Dubinov, V. D. Selemir, V. A. Sidorova, N. I. Sel’chenkova, and V. L. Sel’chenkov, Thermal and mechanical loading of the anode grid of an SHF generator with a virtual cathode operating under pulsed-periodic conditions, J. Eng. Phys. Thermophys., 71, No. 5, 886–888 (1998).

    Article  Google Scholar 

  12. V. Baryshevsky, A. Gurinovich, E. Gurnevich, and P. Molchanov, Experimental study of an axial vircator with resonant cavity, IEEE Trans. Plasma Sci., 43, No. 10, 3507−3511 (2015).

    Article  Google Scholar 

  13. G. Liu, W. Huang, H. Shao, S. Qiu, H. Wang, J. Liu, F. Wang, Z. Yang, and Y. Qiao, Effects of diode current on high power microwave generation in a vircator, J. Plasma Phys., 75, No. 6, 787−798 (2009).

    Article  Google Scholar 

  14. A. Roy, A. Sharma, V. Sharma, A. Patel, and D. P. Chakravarthy, Frequency variation of a reflex-triode virtual cathode oscillator, IEEE Trans. Plasma Sci., 41, No. 1, 238−242 (2013).

    Article  Google Scholar 

  15. A. A. Badarin, S. A. Kurkin, A. A. Koronovskii, and A. E. Khramov, Investigation into the infl uence of the conductivity of the drift chamber on the dynamics of a relativistic electron flux with a virtual cathode, Pis’ma Zh. Tekh. Fiz., 41, No. 23, 72–80 (2015).

    Google Scholar 

  16. V. P. Tarakanov, User’s Manual for Code KARAT, Berkley Research Associates, Springfield, VA (1992).

    Google Scholar 

  17. A. E. Dubinov and V. P. Tarakanov, PIC simulation of a two-foil vircator, Laser Part. Beams, 35, No. 2, 362−365 (2017).

    Article  Google Scholar 

  18. A. E. Dubinov and V. P. Tarakanov, PIC simulation of the dynamics of electrons in a conical vircator, IEEE Trans. Plasma Sci., 44, No. 8, 1391−1395 (2016).

    Article  Google Scholar 

  19. L. D. Landau and E. M. Lifshits, Theoretical Physics. Vol. 8. Continuum Electrodynamics [in Russian], Nauka, Moscow (1982).

  20. G. Knopfel, Superstrong Magnetic Fields [Russian translation], Mir, Moscow (1972).

    Google Scholar 

  21. H. A. Davis, R. R. Bartsch, T. J. T. Kwan, E. G. Sherwood, and R. M. Stringfield, Experimental confirmation of the reditron concept, IEEE Trans. Plasma Sci., 16, No. 2, 192−198 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Dubinov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 95, No. 2, pp. 562–565, March–April, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubinov, A.E., Tarakanov, V.P. Influence of the Conductivity of Resonator Walls on the Characteristics of a Microwave Generator with a Virtual Cathode: Numerical Experiments. J Eng Phys Thermophy 95, 553–556 (2022). https://doi.org/10.1007/s10891-022-02511-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-022-02511-0

Keywords

Navigation