Skip to main content
Log in

Preparation of Hybrid Nanofluids, Their Thermophysical Properties, and Stability Parameters

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

A review of methods of preparation of hybrid nanofluids produced with the use of particles of metals, nonmetals, and their oxides as well as results of recent investigations on the thermophysical properties of these nanofluids and their stability are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Chandrasekar, S. Suresh, and F. C. Bose, Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid, Exp. Therm. Fluid Sci., 34, Issue 2, 210–216 (2010).

    Article  Google Scholar 

  2. S. M. Peyghambarzadeh, S. H. Hashemabadi, M. S. Jamnaniand, and S. M. Hoseini, Improving the cooling performance of automobile radiator with Al2O3/water nanofluid, Appl. Therm. Eng., 31, 1833–1838 (2011).

    Article  Google Scholar 

  3. A. Zamzamian, S. H. Oskouie, A. Doosthoseini, A. Joneidi, and M. Pazouki, Experimental investigation of forced convective heat transfer coefficient in nanofluids of Al2O3/EG and CuO/EG in a double pipe and plate heat exchangers under turbulent flow, Exp. Therm. Fluid Sci., 35, 495–502 (2011).

    Article  Google Scholar 

  4. R. Raud, B. Hosterman, A. Diana, T. A. Steinbergand, and G. Will, Experimental study of the interactivity, specific heat, and latent heat of fusion of water-based nanofluids, Appl. Therm. Eng., 117, 164–168 (2017).

    Article  Google Scholar 

  5. H. M. Nieh, T. P. Teng, and C. C. Yu, Enhanced heat dissipation of a radiator using oxide nanocoolant, Int. J. Therm. Sci., 77, 252–261 (2014).

    Article  Google Scholar 

  6. W. Chamsa-ard, S. Brundavanam, C. C. Fung, D. Fawcett, and G. Poinern, Nanofluid types, their synthesis, properties, and incorporation in direct solar thermal collectors: A review, Nanomaterials, 7, No. 6, Article ID 131 (2017).

  7. W. N. Septiadi, I. A. N. Titin Trisnadewi, N. Putra, and I. Setyawan, Synthesis of hybrid nanofluid with two-step method, E3S Web Conf., 67, Article ID 03057 (2018).

  8. A. Kakavandi and M. Akbari, Experimental investigation of thermal conductivity of nanofluids containing hybrid nanoparticles suspended in binary base fluids, Int. J. Heat Mass Transf., 124, 742–751 (2018).

    Article  Google Scholar 

  9. G. Huminic, A. Huminic, F. Dumitrache, C. Fleacă, and I. Morjan, Study of the thermal conductivity of hybrid nanofluids: Recent research and experimental study, Powder Technol., 367, 347–357 (2020).

    Article  Google Scholar 

  10. R. Pourrajab, A. Noghrehabadi, E. Hajidavalloo, and M. Behbahani, Investigation of thermal conductivity of a new hybrid nanofluids based on mesoporous silica modified with copper nanoparticles: Synthesis, characterization and experimental, J. Mol. Liq., 300, Article ID 112337 (2019).

  11. S. Barewar, S. Tawri, and S. Chougule, Experimental investigation of thermal conductivity and its ANN modeling for glycol-based Ag/ZnO hybrid nanofluids with low concentration, J. Therm. Anal. Calorim., 139, Issue 3, 1779–1790 (2019).

    Article  Google Scholar 

  12. Y. Liu, D.Yin, M.Tian, X. Hu, and X. Chen, Experimental investigation on the viscosity of hybrid nanofluids made of two kinds of nanoparticles mixed in engine oil, Micro Nano Lett., 13, Issue 8 (2018).

  13. G. Madalina Moldoveanu, A. Adriana, M. MihaiIacob, C. Ibanescu, and M. Danu, Experimental study on viscosity of stabilized Al2O3, TiO2 nanofluids and their hybrids, Thermochem. Acta, 59, 203–212 (2018).

    Article  Google Scholar 

  14. S. D. Barewar, S. S. Chougule, J. Jadhav, and S. Biswas, Synthesis and thermophysical properties of water-based novel Ag/ZnO hybrid nanofluids. J. Therm. Anal. Calorim., 134, Issue 3, 1493–1504 (2018).

    Article  Google Scholar 

  15. S. Suresh, K. P. Venkitaraj, P. Selvakumarand, and M. Chandrasekar, Synthesis of Al2O3–Cu/water hybrid nanofluids using two-step method and its thermophysical properties. Colloids Surfaces A: Physicochem. Eng. Aspects, 388, Nos. 1–3, 41–48, (2011).

    Article  Google Scholar 

  16. S. Kannaiyan, C. Boobalan, A. Umasankaran, A. Ravirajan, S. Sathyanand, and T. Thomas, Comparison of experimental and calculated thermophysical properties of alumina/cupric oxide hybrid nanofluids. J. Mol. Liquids, 244, 469–477 (2017).

    Article  Google Scholar 

  17. M. Hemmat Esfe, P. M. Behbahani, A. A. A. Arani, and M. R. Sarlak, Thermal conductivity enhancement of SiO2–MWCNT (85:15%) EG hybrid nanofluids. J. Therm. Anal. Calorim., 128, No. 1, 249–258 (2016).

    Article  Google Scholar 

  18. S. K. Mechiri, V. Vasu, and G. Venu, Thermal conductivity of Cu–Zn hybrid Newtonian nanofluids: Experimental data and modeling using neural network. Proced. Eng., 127, 561–567 (2015).

    Article  Google Scholar 

  19. S. K. Mechiri, V. Vasu, and G. A. Venu, Investigation of thermal conductivity and rheological properties of vegetable oil-based hybrid nanofluids containing Cu–Zn hybrid nanoparticles. Exp. Heat Transf., 30, No. 3, 205–217 (2016).

    Article  Google Scholar 

  20. J. R. Eggers and S. Kabelac, Nanofluids revisited, Appl. Therm. Eng., 106, 1114–1126 (2016).

    Article  Google Scholar 

  21. D. Dey, P. Kumar, and S. Samantaray, A review of nanofluid preparation, stability, and thermo-physical properties, Heat Transf. Asian Res., 46, No. 8, 1413–1442 (2017).

    Article  Google Scholar 

  22. I. M. Mahbubul, E. B. Elcioglu, R. Saidur, and M. A. Amalina, Optimization of ultrasonication period for better dispersion and stability of TiO2–water nanofluid, Ultrasonics Sonochem., 37, 360–367 (2017).

    Article  Google Scholar 

  23. R. Azizian, E. Doroodchi, and B. Moghtaderi, Influence of controlled aggregation on thermal conductivity of nanofluids, J. Heat Transf., 138, No. 2, Article ID 021301 (2016).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Okafor Anthony Amaechi.

Additional information

Published in Inzhenerno-Fizicheskii Zhurnal, Vol. 95, No. 2, pp. 543–548, March–April, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amaechi, O.A., Ogonna, M.C. Preparation of Hybrid Nanofluids, Their Thermophysical Properties, and Stability Parameters. J Eng Phys Thermophy 95, 533–538 (2022). https://doi.org/10.1007/s10891-022-02509-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-022-02509-8

Keywords

Navigation