Skip to main content
Log in

Numerical Simulation of a Forced Convection Laminar Fluid Flow with Regard for the Thermodiffusion of Nanoparticles in It

  • NANOSTRUCTURES
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The forced convection of the nanofluid representing a water with aluminum oxide particles, flowing in the laminar regime in a circular channel with a heat flow of constant density at the channel wall, was numerically investigated by the homogeneous and heterogeneous models of the fluid flow with regard for the transport of nanoparticles in it due to their diffusion or thermodiffusion. An increase in the thermodiffusion of nanoparticles in a laminar fluid flow with increase in their concentration in it was demonstrated. The results of calculations performed by the indicated two models are in good agreement with the corresponding experimental data. However, the homogeneous model as a whole approximates experimental data more closely. It is shown that, in the case where the concentration of nanoparticles in a fluid is high (6%), the influence of their thermal diffusion on the heat transfer and the pressure drop in the laminar fluid flow in a channel does not exceed 2%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Yu, D. M. France, J. L. Routbort, and S. U. S. Choi, Review and comparison of nanofluid thermal conductivity and heat transfer enhancements, Heat Transf. Eng., 29, No, 5, 432–460 (2008).

    Article  Google Scholar 

  2. X.-Q. Wang and A. S. Mujumdar, Heat transfer characteristics of nanofluids: A review, Int. J. Therm. Sci., 46, 1–19 (2007).

    Article  Google Scholar 

  3. L. Q. Wang and M. Quintard, Nanofluids of the future, in: Advances in Transport Phenomena, Springer-Verlag, Berlin, Heidelberg, 1 (2009), pp. 179–243.

  4. K. V. Wong and O. De Leon, Applications of nanofluids: Current and future, Adv. Mech. Eng., Article ID 519659 (2010).

  5. V. Rudyak, V. Aniskin, A. Maslov, A. Minakov, and S. Mironov, Micro- and nanoflows modeling and experiments, Fluid Mech. Appl., 118, 185–215 (2018).

    Google Scholar 

  6. A. A. Avramenko, M. M. Kovetskaya, A. I. Tyrinov, and Yu. Yu. Kovetskaya, Distinctive features of the use of nanofluids to enhance boiling heat transfer, J. Eng. Phys. Thermophys., 93, No. 1, 74–82 (2020).

    Article  Google Scholar 

  7. K. Kleinstreuer and F. Yu, Experimental and theoretical studies of nanofluid thermal conductivity enhancement: A review, Nanoscale Res. Lett., 6, No. 229, 1–13 (2011).

    Google Scholar 

  8. G. Chen, W. Yu, D. Singh, D. Cookson, and J. Routbort, Application of SAXS to the study of particle size dependent thermal conductivity in silica nanofluids, J. Nanopart. Res., 10, 1109–1114 (2008).

    Article  Google Scholar 

  9. M. P. Beck, Y. Yuan, P. Warrier, and A. S. Teja, The effect of particle size on the thermal conductivity of alumina nanofluids, J. Nanopart. Res., 11, 1129–1136 (2009).

    Article  Google Scholar 

  10. E. V. Timofeeva, D. S. Smith, W. Yu, D. M. France, D. Singh, and J. L. Routbort, Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based α-SiC nanofluids, Nanotechnol., 21, Article ID 215703 (2010).

    Article  Google Scholar 

  11. M. I. Pryazhnikov, A. V. Minakov, V. Ya. Rudyak, and D. V. Guzei, Thermal conductivity measurements of nanofluids, Int. J. Heat Mass Transf., 104, No. 1, 1275–1282 (2017).

    Article  Google Scholar 

  12. V. Ya. Rudyak and S. L. Krasnolutskii, Simulation of the thermal conductivity of a nanofluid with small particles by molecular dynamics methods, Tech. Phys., 62, No. 10, 1456–1465 (2017).

    Article  Google Scholar 

  13. V. I. Terekhov, S. V. Kalinina, and V. V. Lemanov, The mechanism of heat transfer in nanofluids: state of the art (review). Part 2: Convective heat transfer, Thermophys. Aeromech., 17, No. 2, 157–171 (2010).

    Article  Google Scholar 

  14. Q. Li and Xuan Y. Convective heat transfer and flow characteristics of Cu–water nanofluid, Sci. China E., 45, 408–416 (2002).

    Google Scholar 

  15. Y. He, Y. Jin, H. Chen, Y. Ding, D. Cang, and H. Lu, Heat transfer and flow behavior of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe, Int. J. Heat Mass Transf., 50, 22–72 (2007).

    Article  Google Scholar 

  16. B. C. Pak and Y. I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. Heat Transf., 11, 151–170 (1998).

    Article  Google Scholar 

  17. W. Duangthongsuk and S. Wongwises, An experimental study on the heat transfer performance and pressure drop of TiO2–water nanofluids flowing under a turbulent flow regime, Int. J. Heat Mass Transf., 53, 334–344 (2010).

    Article  Google Scholar 

  18. E. V. Timofeeva, Yu. Wenhua, D. M. France, D. Singh, J. L. Routbort, Base fluid and temperature effects on the heat transfer characteristics of SiC in ethylene glycol/H2O and H2O nanofluids, J. Аppl. Phys., 109, Article ID 014914 (2011).

  19. C. T. Nguyen, G. Roy, C. Gauthier, and N. Galanis, Heat transfer enhancement using Al2O3–water nanofluid for electronic liquid cooling system, Appl. Therm. Eng., 28, 1501–1506 (2007).

    Article  Google Scholar 

  20. Z. Mehrez, A. El Cafsi, A. Belghith, and P. Le Quéré, The entropy generation analysis in the mixed convective assisting flow of Cu-water nanofluid in an inclined open cavity, Adv. Powder Technol., 26, 1442–1451 (2016).

    Article  Google Scholar 

  21. S. Kakac and A. Pramuanjaroenkij, Single-phase and two-phase treatments of convective heat transfer enhancement with nanofluids — A state-of-the-art review, Int. J. Therm. Sci., 100, 75–97 (2016).

    Article  Google Scholar 

  22. J. Buongiorno, Convective transport in nanofl uids, ASME J. Heat Transf., 128, 240–250 (2006).

    Article  Google Scholar 

  23. I. I. Ryzhkov and A. V. Minakov, The effect of nanoparticle diffusion and thermophoresis on convective heat transfer of nanofluid in a circular tube, Int. J. Heat Mass Transf., 77, 956–969 (2014).

    Article  Google Scholar 

  24. A. S. Lobasov, A. V. Minakov, and V. Ya. Rudyak, Studying the fluids and nanofluids mixing modes in a T-shaped micromixer, J. Eng. Phys. Thermophys., 91, No. 1, 133–145 (2018).

    Article  Google Scholar 

  25. S. Pantakar, Numerical Heat Transfer and Fluid Flow [Russian translation], Énergoatomizdat, Moscow (1984).

    Google Scholar 

  26. J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics, Springer Science+Business Media Inc, Berlin (2002).

    Book  Google Scholar 

  27. B. P. Leonard, A stable and accurate convective modeling procedure based on quadratic upstream interpolation Comp. Math. Appl. Mech. Eng., 19, 59–98 (1979).

    Article  Google Scholar 

  28. S. M. Rhie and U. L. Chou, Numerical study of the turbulent flow past an airfoil with trailing edge separation, AIAA J., 21, No. 11, 1525–1532 (1983).

    Article  Google Scholar 

  29. U. Trottenberg, C. W. Oosterlee, and A. Schüller, Multigrid, Academic Press, 2001.

  30. V. Ya. Rudyak, A. V. Minakov, and M. I. Pryazhnikov, Thermal properties of nanofluids and their similarity criteria, Tech. Phys. Lett., 43, No. 1, 23–26 (2017).

    Article  Google Scholar 

  31. H. Chen, Y. Ding, and C. Tan, Rheological behavior of nanofluids, New J. Phys., 9, 367–371 (2007).

    Article  Google Scholar 

  32. C. T. Nguyen, F. Desgranges, N. Galanis, G. Roy, T. Maré, S. Boucher, and H. Angue Mintsa, Viscosity data for Al2O3–water nanofluid–hysteresis: is heat transfer enhancement using nanofluids reliable? Int. J. Therm. Sci., 47, 103–111 (2008).

    Article  Google Scholar 

  33. V. Ya. Rudyak, S. V. Dimov, and V. V. Kuznetsov, On the dependence of the viscosity coefficient of nanofluids on particle size and temperature, Tech. Phys. Lett., 39, No. 9, 779–782 (2013).

    Article  Google Scholar 

  34. A. V. Minakov, V. Ya. Rudyak, D. V. Guzei, M. I. Pryazhnikov, and A. S. Lobasov, Nanofluid thermal conductivity measurement using the hot-wire method, J. Eng. Phys. Thermophys., 88, No. 1, 148–160 (2015).

    Article  Google Scholar 

  35. V. Ya. Rudyak, A. A. Belkin, and E. A. Tomilina, Force acting on nanoparticle in fluid, Tech. Phys. Lett., 34, No. 1, 76–78 (2008).

    Article  Google Scholar 

  36. G. S. McNab and A. Meisen, Thermophoresis in liquids, J. Colloid Interface Sci., 44, No. 2, 339–346 (1973).

    Article  Google Scholar 

  37. C. H. Sohn and K. D. Kihm, Nonhomogeneous modelling of nanofluidic energy transport accounting for thermophoretic migration of nanoparticles inside laminar pipe flows, J. Korean Phys. Soc., 55, No. 5, 2200–2208 (2009).

    Article  Google Scholar 

  38. M. M. Heyhat and F. Kowsary, Effect of particle migration on flow and convective heat transfer of nanofluids flowing through a circular pipe, ASME J. Heat Transf., 132, Article ID 062401 (2010).

  39. R. Piazza and A. Parola, Thermophoresis in colloidal suspensions, J. Phys., Cond. Matter., 20, Article ID 153102 (2008).

  40. S. Iacopini, R. Rusconi, and R. Piazza, The “macromolecular tourist”: Universal temperature dependence of thermodiffusion in aqueous suspensions, Europ. Phys. J. E., 19, 59–67 (2006).

    Article  Google Scholar 

  41. M. Braibanti, D. Viglio, and R. Piazza, Does thermophoretic mobility depend on particle size? Phys. Rev. Lett., 100, Article ID 108303 (2008).

  42. A. Wurger, Thermal non-equilibrium transport in colloids, Rep. Prog. Phys., 73, Article ID 126601 (2010).

  43. G. Galliero, Thermodifusion in model nanofluids by molecular dynamics simulations, J. Chem. Phys., 128, No. 6, Article ID 064505 (2008).

  44. V. Ya. Rudyak and S. L. Krasnolutsky, Simulation of nanoparticle thermal diffusion in dense gases and fluids, Atmosph. Ocean Optics, 29, 512–515 (2016).

    Article  Google Scholar 

  45. J. C. Giddings, P. M. Shinudu, and S. N. Semenov, Thermophoresis of metal particles in liquids, J. Colloid Interface Sci., 176, 454–458 (1995).

    Article  Google Scholar 

  46. D. V. Guzei, A. V. Minakov, and V. Ya. Rudyak, On efficiency of convective heat transfer of nanofluids in laminar flow regime, Int. J. Heat Mass Transf., 139, 180–192 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 95, No. 2, pp. 526–536, March–April, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzei, D.V., Minakov, A.V. & Rudyak, V.Y. Numerical Simulation of a Forced Convection Laminar Fluid Flow with Regard for the Thermodiffusion of Nanoparticles in It. J Eng Phys Thermophy 95, 516–526 (2022). https://doi.org/10.1007/s10891-022-02507-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-022-02507-w

Keywords

Navigation