Skip to main content
Log in

Wave Heat Transfer in Anisotropic Half-Space under the Action of a Point Exponential-Type Heat Source Based on the Wave Parabolic-Type Equation

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Based on the generalized law of wave heat transfer, a wave equation of parabolic type is obtained, for which the problem of heating an anisotropic half-space under the action of a point nonstationary source of thermal energy of exponential character is posed and solved analytically. The anisotropic half-space has anisotropy of heat transfer in planes parallel to the plane bounding the body, whereas the body is isotropic in the direction of the axis perpendicular to these planes. Therefore, the isotherms moving in time have the form of elliptical paraboloids, at the fronts of which the first-kind discontinuous changes are observed in both temperatures and heat fluxes, which is a consequence of the wave nature of heat transfer. Numerical results are obtained and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Luikov, Heat Conduction Theory [in Russian], Vysshaya Shkola, Moscow (1967).

    Google Scholar 

  2. A. G. Shashkov, A. V. Bubnov, and S. Yu. Yanovskii, Wave Phenomena of Heat Conduction [in Russian], URSS, Moscow (2004).

    Google Scholar 

  3. S. L. Sobol′, Transfer processes and running waves in locally nonequilibrium systems, Usp. Fiz. Nauk, 161, No. 3, 5–15 (1991).

    Article  Google Scholar 

  4. P. Vernotton, La Nouvelle equation de la chaleur, J. de la Trans de la Chaleur, 1−12 (1961).

    Google Scholar 

  5. É. M. Kartashov, Mathematical models of heat conduction with a two-phase lag, J. Eng. Phys. Thermophys., 89, No. 2, 346–356 (1991).

    Article  Google Scholar 

  6. O. N. Shablovskii and D. G. Krol′, Phenomenological assessment of the thermal relaxation time in explosive crystallization of amorphous germanium fi lms, Tepl. Prots. Tekh., No. 5, 203–208 (2010).

    Google Scholar 

  7. O. N. Shablovskii, Thermal hysteresis in nonlinear media, J. Eng. Phys. Thermophys., 59, No. 1, 944–950 (1990).

    Article  Google Scholar 

  8. V. F. Formalev, É. M. Kartashov, and S. A. Kolesnik, Simulation of nonequilibrium heat transfer in an anisotropic semispace under the action of a point heat source, J. Eng. Phys. Thermophys., 92, No. 6, 1537–1547 (2019).

    Article  Google Scholar 

  9. V. F. Formalev and S. A. Kolesnik, On thermal solitons during wave heat transfer in limited regions, Teplofi z. Vys. Temp., 57, No. 4, 543–547 (2019).

    Google Scholar 

  10. V. A. Kudinov and I. V. Kudinov, Mathematical simulation of the locally nonequilibrium heat transfer in a body with account for its nonlocality in space and time, J. Eng. Phys. Thermophys., 88, No. 2, 406–422 (2015).

    Article  Google Scholar 

  11. É. M. Kartashov, Originals of operational images for generalized problems of nonstationary heat conduction, Tonk. Khim. Tekhnol., 14, No. 4, 77–86 (2019).

    Google Scholar 

  12. É. M. Kartashov, Analytical solutions of hyperbolic heat-conduction models, J. Eng. Phys. Thermophys., 87, No. 5, 1116–1125 (2014).

    Article  Google Scholar 

  13. V. F. Formalev, On thermal shock waves in nonlinear media, Teplofi z. Vys. Temp., 50, No. 6, 799–803 (2012).

    Google Scholar 

  14. V. F. Formalev and S. A. Kolesnik, Analytical investigation of heat transfer in an anisotropic band and with heat fluxes assigned at the boundaries, J. Eng. Phys. Thermophys., 89, No. 4, 975–984 (1016).

    Article  Google Scholar 

  15. V. F. Formalev and S. A. Kolesnik, Heat transfer in a half-space with transversal anisotropy under the action of a lumped heat source, J. Eng. Phys. Thermophys., 92, No. 1, 51–59 (2019).

    Article  Google Scholar 

  16. V. F. Formalev, S. A. Kolesnik, and E. L. Kuznetsova, Influence of the thermal conductivity tensor components of heat protecting material on the magnitude of heat fluxes of the gas-dynamical boundary layer, Teplofiz. Vys. Temp., 57, No. 1, 66–71 (2019).

    Google Scholar 

  17. V. F. Formalev, S. A. Kolesnik, and B. A. Garibyan, Heat transfer with absorption in anisotropic thermal protection of high-temperature products, Vestn. MGU im. N. É. Baumana, Ser. Estestv. Nauki, No. 5, 35–49 (2019).

  18. A. V. Attetkov and I. K. Volkov, Temperature field of an anisotropic half-space with its moving boundary containing film coating, Izv. Ross. Akad. Nauk, Énergetika, No. 3, 39–49 (2015).

    Google Scholar 

  19. G. Korn and T. Korn, Handbook of Mathematics [Russian translation], Nauka, Moscow (1968).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Formalev.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 95, No. 2, pp. 373–380, March–April, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Formalev, V.F., Kartashov, É.M. & Kolesnik, S.A. Wave Heat Transfer in Anisotropic Half-Space under the Action of a Point Exponential-Type Heat Source Based on the Wave Parabolic-Type Equation. J Eng Phys Thermophy 95, 366–373 (2022). https://doi.org/10.1007/s10891-022-02490-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-022-02490-2

Keywords

Navigation