Skip to main content
Log in

Accumulation of Isotope Mixture Components in a Separation Cascade

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Numerical investigations have been conducted into the process of separating a multicomponent isotope mixture in a cascade. Regular patterns have been established for the effects of the cascade parameters on the component concentration value in the cascade gas content. Conditions have been identified under which the maximum quantity of the target component is accumulated in the cascade. The investigation results can be used for further study of unsteady processes of accumulating isotope mixture components in a separation cascade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Song, S. Zeng, G. A. Sulaberidze, V. D. Borisevich, and Q. Xie, Comparative study of the model and optimum cascades for multicomponent isotope separation, Sep. Sci. Technol., 45, Issue 14, 2113–2118 (2010).

    Article  Google Scholar 

  2. G. A. Sulaberidze and V. D. Borisevich, Cascades for separation of multicomponent isotope mixtures, Sep. Sci. Technol., 36, Issue 9, 1769–1817 (2001).

    Article  Google Scholar 

  3. G. A. Sulaberidze, V. D. Borisevich, and H. G. Wood, Ideal and optimum cascades, Sep. Sci. Technol., 43, Issue 13, 3377–3392 (2008).

    Article  Google Scholar 

  4. V. D. Borisevich, M. A. Borschevskiy, S. Zeng, and D. Jiang, On ideal and optimum cascades of gas centrifuges with variable overall separation factors, Chem. Eng. Sci., 116, 465–472 (2014).

    Article  Google Scholar 

  5. A. Yu. Smirnov and G. A. Sulaberidze, Comparison of methods of enriching intermediate components in cascades with the same number of separative elements, At. Energy, 117, No. 5, 340–346 (2015).

    Article  Google Scholar 

  6. S. Zeng, L. Cheng, D. Jiang, and V. Borisevich, A generalization of the virtual components concept for numerical simulation of multi-component isotope separation in cascades, Chem. Eng. Sci., 120, 105–111 (2014).

    Article  Google Scholar 

  7. V. D. Borisevich and E. V. Levin, Separation of multicomponent isotope mixtures by gas centrifuge, Sep. Sci. Technol., 36, Issue 9, 1697–1735 (2001).

    Article  Google Scholar 

  8. N. S. Babaev, A. N. Cheltsov, A. A. Sazykin, A. A. Sazikin, and A. I. Rudnev, Centrifugal enrichment of mercury isotopes, Nuclear Instrum. Methods Phys. Res., Section A, 613, Issue 3, 473–476 (2010).

    Article  Google Scholar 

  9. A. N. Tcheltsov, L. Yu. Sosnin, Yu. D. Shipilov, et al., Centrifugal enrichment of zinc isotopes, their application in medicine and in increasing radiation safety in nuclear power plants, Nuclear Instrum. Methods Phys. Res., Section A, 561, Issue 1, 52–57 (2006).

    Article  Google Scholar 

  10. A. A. Orlov, A. A. Ushakov, V. P. Sovach, and R. V. Malyugin, Mathematical modeling of nonstationary separation processes in a gas centrifuge cascade for separation of tungsten isotopes, J. Eng. Phys. Thermophys., 91, No. 3, 566–573 (2018).

    Article  Google Scholar 

  11. A. A. Orlov, A. A. Ushakov, and V. P. Sovach, Nonstationary transfer of components of an isotopic mixture as a result of the change in a cascade flows, J. Eng. Phys. Thermophys., 92, No. 4, 853–860 (2019).

    Article  Google Scholar 

  12. A. De La Garza, G. A. Garett, and J. E. Murphy, Multicomponent isotope separation in cascades, Chem. Eng. Sci., 15, 188–209 (1961).

    Article  Google Scholar 

  13. I. Yamamoto and A. Kanagawa, Multicomponent isotope separating cascade composed of elements with large separation factors, J. Nuclear Sci. Technol., 15, No. 8, 580–584 (1978).

    Article  Google Scholar 

  14. A. Yu. Smirnov and G. A. Sulaberidze, Q-cascades for obtaining highly concentrated intermediate components of separated mixtures, Theor. Found. Chem. Eng., 47, No. 4, 375–380 (2013).

    Article  Google Scholar 

  15. G. A. Sulaberidze, D. V. Potapov, V. D. Borisevich, and Q. Xie, Special features of the enrichment of components with intermediate mass in a quasi-ideal cascade, At. Energy, 100, No. 1, 53–59 (2006).

    Article  Google Scholar 

  16. I. A. Suvorov, A. N. Tcheltsov, L. Yu. Sosnin, A. A. Sazikin, and A. I. Rudnev, Centrifugal extraction of highly enriched tin isotopes and increase of specific activity of the radionuclide 119mSn on the gas centrifuge cascade, Nuclear Instrum. Methods Phys. Res., Section A, 480, 22–28 (2002).

    Google Scholar 

  17. L. Yu. Sosnin, A. N. Tcheltsov, A. P. Kuchelev, G. V. Remin, and H. H. Hobotov, Centrifugal extraction of highly enriched 120Te and 122Te using the non-steady state method of separation, Nuclear Instrum. Methods Phys. Res., Section A, 480, 36–39 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ushakov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 95, No. 2, pp. 316–322, March–April, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ushakov, A.A., Orlov, A.A. & Sovach, V.P. Accumulation of Isotope Mixture Components in a Separation Cascade. J Eng Phys Thermophy 95, 309–315 (2022). https://doi.org/10.1007/s10891-022-02485-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-022-02485-z

Keywords

Navigation