Skip to main content
Log in

Radiative-Optical and Thermophysical Characteristics of Fibrous Silica-Based Heat Insulation

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Results of computational and experimental determination of spectral optical parameters, i.e., the indices of scattering and absorption, of two types of silica-based fibrous heat insulation have been given. Materials fabricated from quartz and silica fibers have been considered. The optical parameters in the range of wavelengths 1–4.7 μm were determined by solution of the inverse problem from experimental data for the spectral coefficient of total reflection. The inverse problem was solved by minimization of the residual functional between the experimental and calculated spectra of reflection coefficients of the materials’ layers of several thicknesses. The spectra of the total-reflection coefficients were measured on a Fourier spectrometer with an integrating sphere in the range of wavelengths 1–18 μm. To calculate the spectral reflection coefficient, use was made of the invariant embedding method. By the spectral optical parameters, the authors have assessed the radiative thermal conductivity in the Rosseland approximation and the integral emissive power of material layers of different thicknesses in the range of temperature 20–1100°C. The calculated radiative thermal conductivity has been compared with the experimental data on the effective thermal conductivity measured by the method of a quasi-stationary thermal regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Howell, M. P. Mengüç, and R. Siegel, Thermal Radiation Heat Transfer, CRC Press, Boca Raton (2010).

    Book  Google Scholar 

  2. J.-F. Sacadura, Thermal radiative properties of complex media: Theoretical prediction versus experimental identification, Heat Transf. Eng., 32, No. 9, 754−770 (2011).

    Article  Google Scholar 

  3. A. V. Kondratenko, S. S. Moiseev, V. A. Petrov, and S. V. Stepanov, Experimental determination of the optical properties of fibrous quartz insulation, Teplofiz. Vys. Temp., 29, No. 1, 134−138 (1991).

    Google Scholar 

  4. A. V. Zuev and P. V. Prosuntsov, Model of the structure of fibrous heat-insulating materials for analyzing combined heat transfer processes, J. Eng. Phys. Thermophys., 87, No. 6, 1374−1385 (2014).

    Article  Google Scholar 

  5. S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Introduction to Statistical Radiophysics. Part II. Random Fields [in Russian], Nauka, Moscow (1978).

  6. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Multiple Scattering of Light by Particles, Cambridge University Press, New York (2006).

    Google Scholar 

  7. M. I. Mishchenko, Electromagnetic Scattering in Random Dispersive Media: Fundamental Theory and Applications, Candidate′s Dissertation in Physics and Mathematics, Kiev–New York (2007).

  8. R. Viskanta and M. P. Mengüç, Radiative transfer in dispersed media, Appl. Mech. Rev., 42, No. 9, 241−259 (1989).

    Article  Google Scholar 

  9. V. P. Tishkovets, E. V. Petrova, and M. I. Mishchenko, Scattering of electromagnetic waves by ensembles of particles and discrete random media, J. Quant. Spectrosc. Radiat. Transf., 112, 2095−2127 (2011).

    Article  Google Scholar 

  10. K. Boren and D. Hafmen, Light Absorption and Scattering by Small Particles [Russian translation], Mir. Moscow (1986).

    Google Scholar 

  11. T. Wriedt, A rewiev of elastic light scattering theories, Part. Part. Syst. Charact., 15, 67−74 (1998).

    Article  Google Scholar 

  12. O. M. Alifanov and V. V. Cherepanov, Mathematical modeling of high-porosity fibrous materials and determination of their phyiscal properties, Teplofiz. Vys. Temp., 47, No. 3, 463−472 (2009).

    Google Scholar 

  13. H. T. T. Kamdem, Radiative characteristics of high-porosity media containing randomly oriented fibers in space, J. Thermal Sci. Eng. Appl., 9, No. 2, 021014 (2017).

  14. L. A. Dombrovsky, Quartz-fiber thermal insulation: Infrared radiative properties and calculation of radiative-conductive heat transfer, J. Heat Transf., 118, No. 2, 408−414 (1996).

    Article  Google Scholar 

  15. S. C. Lee, Scattering phase function of fi brous media, Int. J. Heat Mass Transf., 33, No. 10, 2183−2190 (1990).

    Article  Google Scholar 

  16. V. V. Cherepanov, O. M. Alifanov, A. V. Morzhukhina, and A. V. Cherepanov, Interaction of radiation with orthogonal representative elements of highly porous materials, Appl. Math. Model., 40, No. 5, 3459−3474 (2016).

    Article  MathSciNet  Google Scholar 

  17. F. M. Kahnert, Numerical methods in electromagnetic scattering theory, J. Quant. Spectrosc. Radiat. Transf., 7980, 775−824 (2003).

  18. O. M. Alifanov and V. V. Cherepanov, Methods to Investigate and Predict the Properties of High-Porosity Thermal Protection Materials [in Russian], MAI, Moscow (2014).

  19. L. A. Dombrovskii, Calculating the spectral radiative characteristics of quartz fibrous heat insulation in the infrared region, Teplofiz. Vys. Temp., 32, No. 2, 209−215 (1994).

    Google Scholar 

  20. O. M. Alifanov, S. A. Budnik, V. V. Mikhailov, and A. V. Nenarokomov, Experimental and computational system to investigate thermophysical properies of thermal materials, Teplov. Prots. Tekh., 1, No. 2, 49−60 (2009).

    Google Scholar 

  21. A. V. Luikov, Methods for Determining Thermal Conductivity and Thermal Diffusivity [in Russian], Énergiya, Moscow (1973).

    Google Scholar 

  22. R. A. Mironov, M. O. Zabezhailov, V. V. Cherepanov, and M. Yu. Rusin, Determination of optical parameters of parially transparent materials by invariant embedding method, Opt. Spectrosc., 123, No. 4, 650−657 (2017).

    Article  Google Scholar 

  23. J. E. Hansen and L. D. Travis, Light scattering in planetary atmospheres, Space Sci. Rev., 16, 527−610 (1974).

    Article  Google Scholar 

  24. M. Sato, K. Kawabata, and J. E. Hansen, A fast and accurate method for multiple scattering calculations and an application to equivalent width of CO2 lines on venus, Astrophys. J., 216, 947−962 (1977).

    Article  Google Scholar 

  25. R. A. Mironov, M. O. Zabezhailov, M. Yu. Rusin, V. V. Cherepanov, and S. P. Borodai, Computational and experimental determination of the temperature dependence of spectral and integral coefficients of radiation of quartz ceramics of varying porosity, Teplofiz. Vys. Temp., 54, No. 5, 724−732 (2016).

    Google Scholar 

  26. E. B. Kryukova, V. G. Plotnichenko, and E. M. Dianov, IR absorption spectra in high-purity silica glasses fabricated by different technologies, Proc. SPIE, 4083, 71 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Mironov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 94, No. 6, pp. 1635–1644, November–December, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mironov, R.A., Gaidenko, V.O., Zabezhailov, M.O. et al. Radiative-Optical and Thermophysical Characteristics of Fibrous Silica-Based Heat Insulation. J Eng Phys Thermophy 94, 1600–1608 (2021). https://doi.org/10.1007/s10891-021-02441-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-021-02441-3

Keywords

Navigation