Skip to main content
Log in

Simulation of Nonstationary Turbulent Flows in Devices For Reducing the Noise Level of High-Pressure Gas Media Moving with a High Velocity

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Features of the simulation of the thermodynamic and gasdynamic processes occurring in devices for reducing the noise level of a shot from a gun were considered. A simulation of large vortices in the nonstationary turbulent flow of powder gases in a muzzle noise reduction device with a silencer representing a shaped channel with several chambers, whose volumes decrease in the direction to the silencer outlet, has been performed. Results of qualitative and quantitative investigations of the initiation, development, and damping of the shock waves in the flow of powder gases, formed as a result of the firing of a shot made from a signal gun, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. A. Konovalov, O. V. Pilipenko, A. D. Skorik, Yu. A. Kvasha, and V. I. Kovalenko, Silent Hand Combat Firearms, Devices for Reducing the Sound of a Shot from a Submachine Gun, Designing and Experimental Development [in Russian], Inst. Tekh. Mekh. NAN Ukrainy, Dnepropetrovsk (2008).

  2. O. V. Pilipenko, N. A. Konovalov, V. I. Kovalenko, and D. V. Semenchuk, Development of devices with spherical partitions for reducing the noise of a shot from a gun, Tekh. Mekh., No. 3, 5–15 (2017).

  3. N. A. Konovalov, O. V. Pilipenko, A. D. Skorik, V. I. Kovalenko, D. V. Semenchuk, and S. D. Ustinov, Shaping of the inner surface of the channel of a device for reducing the noise of a shot from a gun for increasing the efficiency of its work, Tekh. Mekh., No. 2, 6–22 (2015).

  4. S. Bilawchuk and K. R. Fyfe, Comparison and implementation of the various numerical methods used for calculating transmission loss in silencer systems, Appl. Acoust., 64, No. 9, 903–916 (2003).

    Article  Google Scholar 

  5. I. V. Semenov, I. S. Men’shov, P. S. Utkin, I. F. Akhmed’yanov, P. A. Pasynkov, and A. A. Popov, Multidimensional numerical simulation of the cojoint problems of the internal and intervening ballistics, Izv. Vyssh. Uchebn. Zaved., Fizika, No. 6, 58–60 (2013).

  6. O. V. Gus’kov, V. I. Kopchenov, N. I. Lipatov, V. N. Ostras’, and V. P. Starukhin, Processes of Deceleration of Supersonic Flows in Channels [in Russian], Fizmatlit, Moscow (2008).

    Google Scholar 

  7. R. A. Carson and O. Sahni, Numerical investigation of channel leak geometry for blast overpressure attenuation in a muzzle loaded large caliber cannon, J. Fluid. Eng., 137, No. 2, Article 021102 (2014).

  8. E. Costa and F. Lagasco, Development of a 3D numerical methodology for fast prediction of gun blast induced loading, Shock Waves, 24, 257–265 (2014).

    Article  Google Scholar 

  9. N. Hristov, A. Kari, D. Jerkovic, S. Savic, and R. Sirovatka, Simulation and measurements of small arms blast wave overpressure in the process of designing a silencer, Measur. Sci. Rev., 15, No. 1, 27–34 (2015).

    Article  Google Scholar 

  10. R. Kirby, K. Amott, P. T. Williams, and W. Duan, On the acoustic performance of rectangular splitter silencers in the presence of mean flow, J. Sound Vibr., 333, No. 24, 6295–6311 (2014).

    Article  Google Scholar 

  11. R. A. Carson and O. Sahni, Study of the relevant geometric parameters of the channel leak method for blast overpressure attenuation for a large caliber cannon, Comput. Fluid, 115, 211–225 (2015).

    Article  MathSciNet  Google Scholar 

  12. B. Kong, K. Lee, S.-R. Park, S. Jang, and S. Lee, Prediction of sound field from recoilless rifles in terms of source decomposition, Appl. Acoust., 88, 137–145 (2015).

    Article  Google Scholar 

  13. H.-S. Lee, T.-Y. Kang, and J.-H. Hong, Development of a muffler for 40 mm medium caliber gun: Numerical analysis and validation, Int. J. Precis. Eng. Manuf., 19, 245–250 (2018).

    Article  Google Scholar 

  14. Z. Fang and C. Y. Liu, Semi-weak-form mesh-free method for acoustic attenuation analysis of silencers with arbitrary but axially uniform transversal sections, J. Sound Vibr., 442, 752–769 (2019).

    Article  Google Scholar 

  15. H. Arslan, M. Ranjbar, E. Secgin, and V. Celik, Theoretical and experimental investigation of acoustic performance of multi-chamber reactive silencers, Appl. Acoust., 157, Article 106987 (2020).

    Article  Google Scholar 

  16. O. A. Golovanov, G. S. Makeeva, and A. I. Grachev, Mathematical simulation of acoustic devices by the method of decomposition of autonomous blocks with Fluke channels, Izv. Vyssh. Uchebn. Zaved. Povolzh. Regiona, Fiz.-Mat. Nauki, Matematika, No. 4, 35–43 (2007).

  17. V. L. Bucharskii, K. Yu. Dobrinskaya, V. V. Serbin, and A. V. Sichevoi, Designing of a low-noise firing device by numerical simulation methods, Art. Strel. Vooruzh., No. 2, 3–7 (2009).

  18. A. A. Agrafonova, S. G. Smirnov, and V. V. Tupov, Investigation of the acoustic efficiency of noise reduction devices, Izv. Vyssh. Uchebn. Zaved., Mashinostroenie, No. 9, 75–82 (2015).

  19. J. Selech, A. Kilikevicius, K. Kilikeviciene, S. Borodinas, J. Matijoius, D. Vainorius, J. Marcinkiewicz, and Z. Staszak, Force and sound pressure sensors used for modeling the impact of the firearm with a suppressor, Appl. Sci., 10, No. 3, Article 961 (2020).

  20. H. Rehman, S. H. Hwang, B. Fajar, H. Chung, and H. Jeong, Analysis and attenuation of impulsive sound pressure in large caliber weapon during muzzle blast, J. Mech. Sci. Technol., 25, No. 10, 2601–2606 (2011).

    Article  Google Scholar 

  21. S.-W. Lo, C.-H. Tai, and J. T. Teng, Axial-symmetry numerical approaches for noise predicting and attenuating of rifle shooting with suppressors, J. Appl. Math., Article 961457 (2011).

  22. X. Y. Zhao, K. D. Zhou, L. He, Y. Lu, J. Wang, and Q. Zheng, Numerical simulation and experiment on impulse noise in a small caliber rifle with muzzle brake, Shock Vibr., Article 5938034 (2019).

  23. K. N. Volkov, V. N. Emel’yanov, A. I. Tsvetkov, and P. S. Chernyshov, Mechanisms of generation and sources of noise of supersonic jets and numerical simulation of their gasdynamic and aeroacoustic characteristics, Vych. Metody Programmir., 20, 498–515 (2019).

    Google Scholar 

  24. I. G. Rusyak and A. M. Lipanov, Investigation of the conjugate heat and mass transfer at ignition and subsequent nonstationary erosion combustion of powders under conditions close to those of firing a shot, J. Eng. Phys. Thermophys., 89, No. 6, 1527–1537 (2016).

    Article  Google Scholar 

  25. E. I. Astakhova, V. P. Babin, and Yu. I. Ravich, Calculation and measurement of the time-constant of a cooling thermoelement in the steady state, J. Eng. Phys. Thermophys., 62, No. 2, 211–215 (1992).

    Article  Google Scholar 

  26. K. N. Volkov and V. N. Emel’yanov, Simulation of Large Vortices in Calculations of Turbulent Flows [in Russian], Fizmatlit, Moscow (2008).

    Google Scholar 

  27. K. N. Volkov, V. I. Zapryagaev, V. N. Emel’yanov, D. A. Gubanov, I. N. Kavun, N. P. Kiselev, I. V. Teterina, and M. S. Yakovchuk, Visualization of Data of Physical and Mathematical Simulation in Gas Dynamics [in Russian], Fizmatlit, Moscow (2018).

    Google Scholar 

  28. V. Zapryagaev, N. Kiselev, and D. Gubanov, Shock-wave structure of supersonic jet flows, Aerospace, 5, Paper No. 60 (2018).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Volkov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 94, No. 6, pp. 1518–1527, November–December, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkov, K.N., Emel’yanov, V.N., L’vov, D.É. et al. Simulation of Nonstationary Turbulent Flows in Devices For Reducing the Noise Level of High-Pressure Gas Media Moving with a High Velocity. J Eng Phys Thermophy 94, 1484–1493 (2021). https://doi.org/10.1007/s10891-021-02428-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-021-02428-0

Keywords

Navigation