Skip to main content
Log in

Influence of Aluminum Admixtures on the Combustion Regime of Nanostructured Silicon with a Solid-Phase Oxidant

  • HEAT AND MASS TRANSFER IN COMBUSTION PROCESSES
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Consideration has been given to the influence of additives of aluminum nanoparticles to mixtures of nanostructured silicon with a solid-phase oxidant on the characteristics of their high-velocity (detonation) combustion. The thermodynamic characteristics of combustion of the systems “aluminum–silicon–oxygen” and “aluminum– silicon–ammonium perchlorate,” and also the Chapman–Jouguet velocity and the thermodynamic characteristics of solid-phase mixtures of nanostructured silicon with ammonium perchlorate and aluminum nanoparticles with a varying content of aluminum oxide have been calculated in a wide range of compositions. It has been established that for mole fractions of aluminum of less than 0.33 in the solid-fuel mixture, the system has high-velocity-combustion characteristics inherent in silicon-enriched mixtures. It has been shown that detonation combustion of aluminum–silicon–sodium perchlorate mixtures in this region of concentrations of aluminum occurs with a significant velocity defect (of 40–50%) with respect to the Chapman–Jouguet detonation velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Yetter, G. A. Risha, and S. F. Son, Metal particle combustion and nanotechnology, Proc. Combust. Inst., 32, 1819–1883 (2009).

    Article  Google Scholar 

  2. E. L. Dreizin, Metal-based reactive nanomaterials, Prog. Energy Combust. Sci., 35, 141–167 (2009).

    Article  Google Scholar 

  3. Y. F. Ivanov, M. N. Osmonoliev, V. S. Sedoi, V. A. Arkhipov, S. S. Bondarchuk, and A. B. Vorozhtsov, Productions of ultra-fine powders and their use in high energetic compositions, Propellants Explos. Pyrotech., 28, No. 6, 319–333 (2003).

    Article  Google Scholar 

  4. F. Tepper, Nanosize powders produced by electro-explosion of wire and their potential applications, Powder Metall, 43, No. 4, 320–322 (2000).

    Google Scholar 

  5. D. Kovalev, V. Y. Timoshenko, N. Kunzner, E. Gross, and F. Koch, Strong explosive interaction of hydrogenated porous silicon with oxygen at cryogenic temperatures, Phys. Rev. Lett., 87, No. 6, 068301 (2001).

    Article  Google Scholar 

  6. D. Clement, J. Diener, E. Gross, N. Kunzner, V. Y. Timoshenko, and D. Kovalev, Highly explosive nanosilicon-based composite materials, Phys. Stat. Solidi A, 202, No. 8, 1357–1361 (2005).

    Article  Google Scholar 

  7. S. K. Lazarouk, A. V. Dolbik, P. V. Jaguiro, V. A. Labunov, and V. E. Borisenko, Fast exothermic processes in porous silicon, Semiconductors, 39, 881–883 (2005).

    Article  Google Scholar 

  8. M. Du Plessis, Properties of porous silicon nano-explosive devices, Sens. Actuators A, 135, 666–674 (2007).

    Article  Google Scholar 

  9. W. Churaman, L. Currano, and C. Becker, Initiation and reaction tuning of nanoporous energetic silicon, J. Phys. Chem. Solids, 71, 69–74 (2010).

    Article  Google Scholar 

  10. N. W. Piekiel, Chr. J. Morris, W. A. Churaman, M. E. Cunningham, D. M. Lunking, and L. J. Currano, Combustion and material characterization of highly tunable on-chip energetic porous silicon, Propellants Explos. Pyrotech., 40, 16–26 (2010).

    Article  Google Scholar 

  11. A. Plummer, V. Kuznetsov, T. Joyner, J. Shapter, and N. H. Voelcker, The burning rate of energetic films of nanostructured porous silicon, Small, 7, 3392–3398 (2011).

    Article  Google Scholar 

  12. V. S. Parimi, A. Bermúdez Lozda, S. A. Tadigadapa, and R. A. Yetter, Reactive wave propagation in energetic porous silicon composites, Combust. Flame, 161, 2991–2999 (2014).

    Article  Google Scholar 

  13. V. N. Mironov, O. G. Penyazkov, K. N. Kasparov, E. A. Baranyshin, I. A. Ivanov, E. A. Vyazova, K. I. Delendik, and L. Yu. Roshchin, On the dynamics and temperature of combustion of a thin porous-silicon layer in an oxygen medium, in: Heat and Mass Transfer–2016, ITMO im. A. V. Lykova NAN Belarusi, Minsk (2017), pp. 101–114.

  14. V. N. Mironov, O. G. Penyazkov, P. N. Krivosheev, E. A. Baranyshin, E. S. Golomako, and A. V. Sokolov, Distinctive features of burning of porous silicon in oxygen at elevated pressures and in the atmosphere in the system “porous silicon–sodium perchlorate,” in: Heat and Mass Transfer–2018, ITMO im. A. V. Lykova NAN Belarusi, Minsk (2019), pp. 152–162.

  15. S. I. Futko, I. A. Koznacheev, O. S. Rabinovich, O. G. Penyazkov, and P. N. Krivosheev, On the mechanism of combustion of thin nanostructured silicon plates in oxygen at an elevated pressure, J. Eng. Phys. Thermophys., 92, No. 1, 1–11 (2019).

    Article  Google Scholar 

  16. V. N. Mironov, O. G. Penyazkov, P. N. Krivosheev, E. A. Baranyshin, E. S. Golomako, and A. V. Sokolov, Regimes and rates of combustion of porous silicon in oxygen at a pressure of 2 to 35 bar, in: Heat and Mass Transfer–2018, ITMO im. A. V. Lykova NAN Belarusi, Minsk (2019), pp. 141–151.

  17. P. N. Krivosheev, V. N. Mironov, O. G. Penyazkov, and S. I. Futko, On the mechanism of detonation combustion of nanostructured silicon with a solid-phase oxidant, J. Eng. Phys. Thermophys., 93, No. 6, 1439–1448 (2020).

    Article  Google Scholar 

  18. S. Gordon and B. J. McBride, Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications. I. Analysis, NASA Reference Publication (1994).

  19. I. Schumacher, Perchlorates: Their Properties, Manufacture, and Uses [Russian translation], Goskhimizdat, Moscow (1963).

    Google Scholar 

  20. R. J. Kee, F. M. Rupley, and J. A. Miller, CHEMKIN II: A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics, Report SAND89-8009, Sandia National Lab. (1989).

  21. M. E. Coltrin, R. J. Kee, F. M. Rupley, and E. Meeks, SURFACE CHEMKIN III: A Fortran Package for Analyzing Heterogeneous Chemical Kinetics at a Solid-Surface–Gas-Phase Interface, Report SAND96-8217, Sandia National Lab. (1996).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Krivosheyev.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 94, No. 6, pp. 1411–1422, November–December, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krivosheyev, P.N., Mironov, V.N., Penyazkov, O.G. et al. Influence of Aluminum Admixtures on the Combustion Regime of Nanostructured Silicon with a Solid-Phase Oxidant. J Eng Phys Thermophy 94, 1375–1386 (2021). https://doi.org/10.1007/s10891-021-02420-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-021-02420-8

Keywords

Navigation