Skip to main content
Log in

Mathematical Simulation of a High-Frequency Low-Pressure Discharge with Gas Injection in Non-Local Approximation: Electro- and Plasmadynamics

  • TRANSFER PROCESSES IN A LOW-TEMPERATURE PLASMA
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The electro- and plasmadynamic parameters of a high-frequency discharge at a low pressure (13.3–200 Pa) with a gas blowing-through are investigated in a nonlocal approximation. A discharge in a cylindrical discharge tube in a medium of argon is considered. The flow at the beginning of the discharge tube occurs in the regime of a continuous medium, whereas in the region of a plasma bunch and further downstream the flow regime changes to a freemolecular one. In this connection, a hybrid mathematical model is constructed that includes the Boltzmann equation for a neutral gas and the balance equations of the concentration and energy of electrons in the continuous medium approximation. The equations for the plasma particles are supplemented by the Maxwell equations transformed into the equations of telegraphy in the high-frequency electric intensity. The results of calculations of the electric intensity, concentration of electrons, and of electron temperature in the discharge tube are presented. It is shown that account for the nonlocality is an essential factor in simulating the high-frequency inductive discharge with gas injection ensuring effective transfer of charged particles from the field of their generation to the working chamber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Sh. Abdullin, V. S. Zheltukhin, and N. F. Kashapov, High-Frequency Plasma-Jet Treatment of Materials at Low Pressures. Theory and Practice of Application [in Russian], Izd. Kazansk. Gos. Univ., Kazan (2000).

  2. I. Sh. Abdullin, V. S. Zheltukhin, I. R. Sagbiev, and M. F. Shaekhov, Modifi cation of Nanolayers in a High-Frequency Plasma of Low Pressure [in Russian], Izd. Kazansk. Gos. Univ., Kazan (2007).

    Google Scholar 

  3. A. V. Fedotova, I. G. Shaikhiev, V. O. Dryakhlov, et al., Intensifi cation of separation of oil-in-water emulsions using polysulfonamide membranes modifi ed with low-pressure radiofrequency plasma, Pet. Chem., 57, 159–164 (2017).

    Article  Google Scholar 

  4. V. V. Volkov, R. G. Ibragimov, I. S. Abdullin, et al., Modifi cation of polysulfone porous hollow fi ber membranes by air plasma treatment, J. Phys.: Conf. Ser., 751, Issue 1, Art. No. 012028 (2016).

  5. A. R. Garifullin, I. S. Abdullin, E. A. Skidchenko, et al., The effects of low-temperature plasma treatment on the capillary properties of inorganic fi bers J. Phys.: Conf. Ser., 669, Art. 012054 (2016).

  6. V. V. Kudinov, I. K. Krylov, I. Sh. Abdullin, et al., Formation of a strong joint between the fi ber and the matrix in composite material polyethylene plastic, Inorg. Mater.: Appl. Res., 3, No. 3, 257–260 (2012).

  7. J. Mostaghimi and M. I. Boulos, Two-dimensional electromagnetic fi eld effects in induction plasma modeling, Plasma Chem. Plasma Process., 9, No. 1, 25−44 (1989).

    Article  Google Scholar 

  8. D. P. Lymberopoulos and D. J. Economou, Two-dimensional self-consistent radio frequency plasma simulations relevant to the gaseous electronics conference RF reference cell, J. Res. Natl. Inst. Stand. Technol., 100, No. 4, 473−494 (1995).

    Article  Google Scholar 

  9. E. Turkoz and M. Celik, 2D electromagnetic and fl uid models for inductively coupled plasma for RF ion thruster performance evaluation, IEEE Trans. Plasma Sci., 42, No. 1, 235–240 (2014).

    Article  Google Scholar 

  10. Y. Li, G. Berthiau, M. Feliachi, and A. Cheriet, 3D fi nite volume modeling of ENDE using electromagnetic T-formulation, J. Sensors, 2012, Art. No. 785271 (2012).

  11. M. M. Turner, Collisionless electron heating in an inductively coupled discharge, Phys. Rev. Lett., 71, No. 12, 1844–1847 (1993).

    Article  Google Scholar 

  12. M. J. Kushner, W. Z . Collison, M. J. Grapperhaus, J. P. Holland, and M. S. Barnes, A three-dimensional model for inductively coupled plasma etching reactors: Azimuthal symmetry, coil properties, and comparison to experiments, J. App. Phys., 80, 1337–1344 (1996).

  13. P. L. G. Ventzek, R . J. Hoekstra, and M. J. Kushner, Two-dimensional modeling of high plasma density inductively coupled sources for materials processing, J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. Proc., Meas., Phenom., 12, 461–477 (1994).

  14. E. Kawamura, D. B. Graves, and M. A. Lieberman, Fast 2D hybrid fl uid-analytical simulation of inductive/capacitive discharges, Plasma Sources Sci. Technol., 20, Art. No. 035009 (2011).

  15. J. D. Bukowski, D. B. Graves, and P. Vitello, Two-dimensional fl uid model of an inductively coupled plasma with comparison to experimental spatial profi les, J. Appl. Phys., 80, No. 5, 2614−2623 (1996).

    Article  Google Scholar 

  16. T. W. Kim and E. S. Aydil, Experimental and theoretical study of two-dimensional ion fl ux uniformity at the wafer plane in inductively coupled plasmas, IEEE Trans. Plasma Sci., 31, No. 4, 614–627 (2003).

    Article  Google Scholar 

  17. S. V. Dresvin and D. V. Ivanov, The Physics of Plasma [in Russian], Izd. Politekh. Univ., St. Petersburg (2013).

    Google Scholar 

  18. C. Birdsal and A. Langdon, Plasma Physics via Computer Simulation, CRC Press, Boca Raton (1991).

    Book  Google Scholar 

  19. D. J. Economou, T. J. Bartel, R. S. Wise, et al., Two-dimensional direct simulation Monte Carlo (DSMC) of reactive neutral and ion fl ow in a high density plasma reactor, IEEE Trans. Plasma Sci., 23, Issue 4, 581–590 (1995).

    Article  Google Scholar 

  20. D. Hash and M. Meyyappan, A direct simulation Monte Carlo study of fl ow considerations in plasma reactor development for 300 mm processing, J. Electrochem. Soc., 144, No. 11, 3999–4004 (1997).

    Article  Google Scholar 

  21. J. Johannes, T. Bartel, G. A. Hebner, et al., Direct simulation Monte Carlo of inductively coupled plasma and comparison with experiments, J. Electrochem. Soc., 144, No. 7, 2448–2455 (1997).

    Article  Google Scholar 

  22. J.-S. Heo and Y.-K . Hwang, Numerical study on the low density gas fl ows in a plasma etch reactor, J. Mech. Sci. Technol., 19, No. 1, 181–188 (2005).

  23. C. K. Birdsall, Particle-in-cell charged-particle simulations, plus Monte Carlo collisions with neutral atoms, PIC–MCC, IEEE Trans. Plasma Sci., 19, No. 2, 65–85 (1991).

    Article  Google Scholar 

  24. V. V. Serikov, S. Kawamoto, and K. Nanbu, Particle-in-cell plus direct simulation Monte Carlo (PIC–DSMC) approach for self-consistent plasma–gas simulations, IEEE Trans. Plasma Sci., 27, No. 5, 1389−1398 (1999).

    Article  Google Scholar 

  25. F. I. Parra, E. Ah edo, J. M. Fife, and M. Martínez-Sánchez, A two-dimensional hybrid model of the Hall thruster discharge, J. Appl. Phys., 100, Art. No. 023304 (2006).

  26. V. S. Zheltukhin a nd A. Yu. Shemakhin, Calculation of the gas dynamics of HF plasma jets of low pressure, in: Uchen. Zap. Kazansk. Univ., Ser. Fiz.-Mat. Nauki, 153, No. 4, 135−142 (2011).

  27. V. S. Zheltukhin and A. Yu. Shemakhin, Simulation of RF plasma fl owing at low pressure, Math. Models Comput. Simul., 6, Issue 1, 101−107 (2014).

    Article  Google Scholar 

  28. A. Yu. Shemakhin and V. A. Zheltukhin, Mathematical modeling of RF plasma fl ow with metastable atoms at low pressure, Math. Montisnigri, 39, 126–132 (2017).

    MathSciNet  MATH  Google Scholar 

  29. V. S. Zheltukhin and A. Y. Shemakhin, Simulation of rarefi ed low-pressure RF plasma fl ow around the sample, J. Phys.: Conf. Ser., 789, Issue 1, Art. No. 012071 (2017).

  30. A. Y. Shemakhin, V. A. Zheltukhin, and A. A. Khubatkhuzin, Numerical and experimental study of a warming up effect of an underexpanded rarefi ed RF plasma jet outfl owing into a fl ooded area, J. Phys.: Conf. Ser., 774, No. 1, Art. No. 012167 (2016).

  31. A. Y. Shemakhin a nd V. S. Zheltukhin, Mathematical modelling of RF plasma fl ow at low pressures with 3D electromagnetic fi eld, Adv. Mater. Sci. Eng., 2019, Art. No. 7120217 (2019).

  32. A. Y. Shemakhin a nd V. S. Zheltukhin, Mathematical modelling of RF plasma fl ow at low pressure with electrodynamics, J. Phys.: Conf. Ser., 927, Issue 1, Art. No. 012055 (2017).

  33. L. M. Biberman, V . S. Vorob′ev, and I. T. Yakubov, Nonequilibrium low-temperature plasma. IV. Ionization and recombination functions, Teplofi z. Vys. Temp., 7, Issue 4, 593–603 (1969).

  34. J. P. Boeuf and L . C. Pitchford, Two-dimensional model of a capacitively coupled RF discharge and comparisons with experiments in the Gaseous Electronics Conference reference reactor, Phys. Rev. E, 51, No. 2, 1376–1390 (1995).

  35. BOLSIG+. Electron Boltzmann equation solver. URL: http://www.bolsig.laplace.univ-tlse.fr/. Latest version: 12/2019 (beta).

  36. G. J. M. Hagelaar and L. C. Pitchford, Solving the Boltzmann equation to obtain electron transport coeffi cients and rate coefficients for fluid models, Plasma Sources Sci. Technol., 14, 722–733 (2005).

    Article  Google Scholar 

  37. UBC database, Dat abase of Scattering Cross Sections. URL: www.lxcat.net, retrieved on November 12, 2019.

  38. OpenFOAM. Free Op en Source CFD 2011–2016. URL: http://www.openfoam.org.

  39. G. A. Bird, Molec ular Gas Dynamics and the Direct Simulation of the Gas Flow, Claredon Press, Oxford (1994).

    Google Scholar 

  40. I. Sh. Abdullin a nd V. S. Zheltukhin, Mathematical simulation of the process of treating solid bodies in a high-frequency plasma of low pressure, in: Encyclopedia of Low-Temperature Plasma, Series B, Reference Supplements, Bases, Databanks, Vol. XI-5. Applied Plasma Chemistry [in Russian], Yanus-K, Moscow (2006), pp. 502–532.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Shemakhin.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 94, No. 5, pp. 1368–1376, September–October, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shemakhin, A.Y., Zheltukhin, V.S. & Shemakhin, E.Y. Mathematical Simulation of a High-Frequency Low-Pressure Discharge with Gas Injection in Non-Local Approximation: Electro- and Plasmadynamics. J Eng Phys Thermophy 94, 1336–1343 (2021). https://doi.org/10.1007/s10891-021-02415-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-021-02415-5

Keywords

Navigation