Skip to main content
Log in

Simulation of the Injection of Liquid Carbon Dioxide Into a Gas-Hydrate Stratum of Finite Extent

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Results of numerical investigation of the injection of liquid carbon dioxide into a porous stratum saturated with methane and its gas hydrate, accompanied by the replacement of methane in the methane gas hydrate by carbon dioxide, are presented. A round stratum with an impermeable outer boundary of finite radius was considered. It was established that, depending on the duration of the injection of liquid carbon dioxide into such a stratum, the replacement of methane in the methane gas hydrate by carbon dioxide can proceed with the boiling of carbon dioxide or without it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Park, D. Y. Kim, J. W. Lee, D. G. Huh, K. P. Park, J. Lee, and H. Lee, Sequestering carbon dioxide into complex structures of naturally occurring gas hydrates, Proc. Nat. Acad. Sci. USA, 103, No. 34, 12690–12694 (2006).

    Article  Google Scholar 

  2. S. Hirohaman, Y. Shimoyama, A. Wakabayashi, S. Tatsuya, and N. Nishida, Conversion of CH4 hydrate to CO2 hydrate in liquid CO2, J. Chem. Eng. Jpn., 29, 1014–1020 (1996).

    Article  Google Scholar 

  3. H. Lee, Y. Seo, Y. T. Seo, I. Moudrakovski, and J. A. Ripmeester, Recovering methane from solid methane hydrate with carbon dioxide, Angew. Chem. Int. Ed., 42, 5048–5051 (2003).

    Article  Google Scholar 

  4. N. Goel, In situ methane hydrate dissociation with carbon dioxide sequestration: Current knowledge and issues, J. Pet. Sci. Eng., 51, 169–184 (2006).

    Article  Google Scholar 

  5. M. Ota, Y. Abe, M. Watanabe, R. L. Smith Jr., and H. Inomata, Methane recovery from methane hydrate using pressurized CO2, Fluid Phase Equilib., 228229, 553–559 (2005).

  6. M. Ota, T. Saito, T. Aida, M. Watanabe, Y. Sato, and R. L. Smith Jr., Macro and microscopic CH4–CO2 replacement in CH4 hydrate under pressurized CO2, Am. Inst. Chem. Eng. J., 53, No. 10, 2715–2721 (2007).

    Article  Google Scholar 

  7. J. H. Yoon, T. Kawamura, Y. Yamamoto, and T. Komai, Transformation of methane hydrate to carbon dioxide hydrate: In situ Raman spectroscopic observations, J. Phys. Chem. A, 108, 5057–5059 (2004).

    Article  Google Scholar 

  8. J. M. Schicks, M. Luzi, and B. Beeskow-Strauch, The conversion process of hydrocarbon hydrates into CO2 hydrates and vice versa: Thermodynamic considerations, J. Phys. Chem. A, 115, 13324–13331 (2011).

    Article  Google Scholar 

  9. B. R. Lee, C. A. Koh, and A. K. Sum, Quantitative measurement and mechanisms for CH4 production from hydrates with the injection of liquid CO2, Phys. Chem. Chem. Phys., 16, 14922–14927 (2014).

    Article  Google Scholar 

  10. V. E. Dontsov, A. A. Chernov, and E. V. Dontsov, Shock waves and formation of a carbon dioxide hydrate in a gas–liquid medium at an increased initial pressure, Teplofi z. Aéromekh., 14, No. 1, 23–39 (2007).

    Google Scholar 

  11. V. E. Dontsov and A. A. Chernov, Processes of dissolution and hydrate formation downstream of a shock wave in a gas–liquid mixture, Dokl. Akad. Nauk, 425, No. 6, 764–768 (2009).

    Google Scholar 

  12. V. E. Dontsov and A. A. Chernov, Dilution and hydrate forming process in shock waves, Int. J. Heat Mass Transf., 52, Nos. 21–22, 4919–4928 (2009).

    Article  Google Scholar 

  13. V. Sh. Shagapov, M. K. Khasanov, and N. G. Musakaev, Injection of liquid carbon dioxide into a stratum saturated partially with a methane hydrate, Prikl. Mekh. Tekh. Fiz., 57, No. 6, 139–149 (2016).

    MATH  Google Scholar 

  14. M. K. Khasanov and V. Sh. Shagapov, Methane hydrate decomposition in a porous medium upon injection of warm carbon dioxide gas, J. Eng. Phys. Thermophys., 89, No. 5, 1123–1133 (2016).

    Article  Google Scholar 

  15. M. K. Khasanov, Regimes of hydrate formation in the process of injection of carbon dioxide into a porous medium saturated with methane and water, J. Eng. Phys. Thermophys., 91, No. 4, 864–872 (2018).

    Article  Google Scholar 

  16. V. Sh. Shagapov, A. S. Chiglintseva, A. A. Rusinov, and M. K. Khasanov, On the theory of injection of a cold gas into a snow mass accompanied by hydrate formation, J. Eng. Phys. Thermophys., 91, No. 6, 1527–1538 (2018).

    Article  Google Scholar 

  17. A. S. Chiglintseva and A. A. Rusinov, Formation of a hydrate layer at a gas–water (ice) interface, J. Eng. Phys. Thermophys., 92, No. 6, 1396–1405 (2019).

    Article  Google Scholar 

  18. V. A. Istomin and V. S. Yakushev, Gas Hydrates under Natural Conditions [in Russian], Nedra, Moscow (1992).

    Google Scholar 

  19. V. Sh. Shagapov and N. G. Musaakev, Dynamics of Formation and Decomposition of Hydrates in the Systems of Production, Transportation, and Storage of Gas [in Russian], Nauka, Moscow (2016).

    Google Scholar 

  20. G. I. Barenblatt, V. M. Entov, and V. M. Ryzhik, Movement of Liquids and Gases in Natural Strata [in Russian], Nedra, Moscow (1982).

    Google Scholar 

  21. A. A. Samarskii and P. N. Vabishchevich, Computational Heat Transfer [in Russian], Editorial URSS, Moscow (2003).

    Google Scholar 

  22. K. S. Basniev, I. N. Kochina, and V. M. Maksimov, Underground Hydromechanics [in Russian], Nedra, Moscow (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Stolpovskii.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 94, No. 4, pp. 909–917, July–August, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khasanov, M.K., Stolpovskii, M.V. Simulation of the Injection of Liquid Carbon Dioxide Into a Gas-Hydrate Stratum of Finite Extent. J Eng Phys Thermophy 94, 883–891 (2021). https://doi.org/10.1007/s10891-021-02388-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-021-02388-5

Keywords

Navigation