Skip to main content
Log in

Thermo-Stressed State of a Hollow Polymer Dielectric Cylinder

  • HEAT CONDUCTION AND HEAT TRANSFER IN TECHNOLOGICAL PROCESSES
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The paper presents a mathematical model describing the distribution of stresses in a hollow cylinder caused by a one-dimensional steady temperature field occurring at an assigned fixed difference of electrical potentials on the surfaces of a cylinder made of polymer dielectric. A quantitative analysis of the model makes it possible to identify the effects of temperature dependences of the specific electrical resistivity, thermal conductivity coefficient, and mechanical characteristics of the dielectric material on the thermo-stressed state of the cylinder. The model reflects the conditions of work of the dielectric layer of a single fiber high DC-voltage cable. Estimates are given of the conditions for the occurrence of a thermal breakdown of a dielectric cylindrical layer and of the cylinder’s boundary state of stress which occurs in the case of planned or emergency nullification of electric potential difference. The results of such analysis can be useful for identifying possible areas of application of polymer dielectrics in various electrical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. E. Schramm, A. F. Clark, and R. P. Reed, A Compilation and Evaluation of Mechanical, Thermal and Electrical Properties of Selected Polymers, National Bureau of Standards, Boulder, Colorado, US, (1973).

    Google Scholar 

  2. B. M. Tareev, Physics of Dielectric Materials [in Russian], Énergoatomizdat, Moscow (1982).

    Google Scholar 

  3. B. I. Sazhin (Ed.), Electrical Properties of Polymers [in Russian], Khimiya, Leningrad (1986).

    Google Scholar 

  4. J. E. Mark (Ed.), Physical Properties of Polymers: Handbook, Springer (2007).

  5. J. Bailey (Ed.), Properties and Behavior of Polymers, in 2 vols., Wiley, Hoboken, New Jersey (2011).

  6. M. I. Baranov and S. V. Rudakov, Electrothermal action of the pulse of the current of a short artificial-lightning stroke on test specimens of wires and cables of electric power objects, J. Eng. Phys. Thermophys., 91, No. 2, 544–555 (2018); https://doi.org/10.1007/s10891-018-1775-2.

    Article  Google Scholar 

  7. V. S. Zarubin and G. N. Kuvyrkin, Thermal state of a polymer dielectric layer with dielectric characteristics that depend significantly on temperature, J. Eng. Phys. Thermophys., 92, No. 5, 1109–1116 (2019); https://doi.org/10.1007/s10891-019-02026-1.

    Article  Google Scholar 

  8. T. K. Salikhov and A. A. Abdurakhmonov, Formation of the temperature field of dielectric films and of a base in the field of a continuous ion beam, J. Eng. Phys. Thermophys., 91, No. 6, 1425–1430 (2018); https://doi.org/10.1007/s10891-018-1876-y.

    Article  Google Scholar 

  9. G. A. Vorob′ev, Yu. P. Pokholkov, Yu. D. Korolev, and V. I. Merkulov, Physics of Dielectrics (High-Field Area) [in Russian], Izd. TPU, Tomsk (2003).

  10. V. S. Dmitrevskii, Computation and Design of Electrical Insulation [in Russian], Énergoizdat, Moscow (1981).

    Google Scholar 

  11. É. T. Larina, Power Cables and Cable Lines [in Russian], Énergoatomizdat, Moscow (1984).

    Google Scholar 

  12. V. A. Pilipenko, V. N. Ponomar′, and T. V. Petlitskaya, Charge properties of a condenser system based on the two–layer dielectric SiO2–Ta2O5, J. Eng. Phys. Thermophys., 76, No. 1, 193–196 (2003); https://doi.org/10.1023/A:1022904316914.

    Article  Google Scholar 

  13. V. S. Zarubin and G. N. Kuvyrkin, Mathematical Models of the Mechanics and Electrodynamics of a Continuous Medium [in Russian], Izd. MGTU im. N. É. Baumana, Moscow (2008).

    Google Scholar 

  14. V. S. Zarubin, Engineering Methods of Solving Thermal Conductivity Problems [in Russian], Énergoatomizdat, Moscow (1983).

    Google Scholar 

  15. V. S. Zarubin, A. N. Zimin, and G. N. Kuvyrkin, Temperature state of a hollow polymer dielectric cylinder with temperature-dependent characterstics, Prikl. Mat. Tekh. Fiz., 60, No. 1, 69–79 (2019).

    MATH  Google Scholar 

  16. L. N. Novichenok and Z. P. Shul′man, Thermophysical Properties of Polymers [in Russian], Nauka i Tekhnika, Minsk (1971).

  17. I. A. Birger and B. F. Shor (Eds.), Thermostability of Machine Parts [in Russian], Mashinostroenie, Moscow (1975).

    Google Scholar 

  18. G. M. Bartenev and S. Ya. Frenkel′, Physics of Polymers [in Russian], Khimiya, Leningrad (1990).

  19. G. M. Bartenev and A. G. Barteneva, Relaxation Properties of Polymers [in Russian], Khimiya, Moscow (1992).

    Google Scholar 

  20. É. M. Kartashov, B. Tsoi, and V. V. Shevelev, Structural-Statistical Kinetics of the Destruction of Polymers [in Russian], Khimiya, Moscow (2002).

    Google Scholar 

  21. N. N. Trofimov, M. Z. Kanovich, É. M. Kartashov, V. I. Natrusov, A. T. Ponomarenko, V. G. Shevchenko, V. I. Sokolov, and I. D. Simonov-Emel′yanov, Physics of Composite Materials [in Russian], in 2 vols., Mir, Moscow (2005).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yu. Savel’eva.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 94, No. 4, pp. 1085–1093, July–August, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarubin, V.S., Zimin, V.N., Kuvyrkin, A.N. et al. Thermo-Stressed State of a Hollow Polymer Dielectric Cylinder. J Eng Phys Thermophy 94, 1063–1071 (2021). https://doi.org/10.1007/s10891-021-02383-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-021-02383-w

Keywords

Navigation