Skip to main content
Log in

Production of Ferromagnetic Adsorbents from Solid Products of Biowaste Carbonization in a Fluidized Bed in a Medium of Superheated Water Vapor

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Consideration has been given to problems of chemical activation of a solid product of hydrothermal carbonization (hydrochar) of biomass. Pellets from a mixture of poultry litter and straw subjected to carbonization in a fluidized bed in a medium of superheated water vapor at a temperature of 300°C were impregnated with water solution of ferric nitrate, dried in the air at a temperature of 100°C, and held for 2 h at a temperature of 300°C for degradation of iron(III) nitrate and its transformation into iron oxides. The pellets were activated at a temperature of 700–800°C in a horizontal tube furnace in an inert argon atmosphere. The obtained ferromagnetic sorbents have a rather developed system of micro- and mesopores. Furthermore, a twofold increase in the duration of activation results in an 18% increase of the pore specific surface, and the rise in the temperature of the activation process leads to an increase in this surface by 45%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Liu and F. S. Zhang, Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass, J. Hazard. Mater., 167, 933–939 (2009).

    Article  Google Scholar 

  2. Z. Liu, F. S. Zhang, and J. Wu, Characterization and application of chars produced from pinewood pyrolysis and hydrothermal treatment, Fuel, 89, 510–514 (2010).

    Article  Google Scholar 

  3. M. Sevilla, A. Fuertes, and R. Mokaya, High-density hydrogen storage in superactivated carbons from hydrothermally carbonized renewable organic materials, Energy Environ. Sci., 4, 1400–1410 (2011).

    Article  Google Scholar 

  4. M. Sevilla and A. B. Fuertes, Sustainable porous carbons with a superior performance for CO2 capture, Energy Environ. Sci., 4, 1765–1771 (2011).

    Article  Google Scholar 

  5. M. Sevilla, J. A. Maciá-Agulló, and A. B. Fuertes, Hydrothermal carbonization of biomass as a route for the sequestration of CO2: chemical and structural properties of the carbonized products, Biomass Bioenergy, 35, 3152–3159 (2011).

    Article  Google Scholar 

  6. M. Sevilla and A. Fuertes, The production of carbon materials by hydrothermal carbonization of cellulose, Carbon, 47, 2281–2289 (2009).

    Article  Google Scholar 

  7. C. Falco, J. Marco-Lozar, D. Salinas-Torres, E. Morallon, D. Cazorla-Amoros, M. Titirici, and D. Lozano-Castello, Tailoring the porosity of chemically activated hydrothermal carbons: Influence of the precursor and hydrothermal carbonization temperature, Carbon, 62, 346–355 (2013).

    Article  Google Scholar 

  8. L. Wang, Y. Guo, B. Zou, C. Rong, X. Ma, Y. Qu, Y. Li, and Z. Wang, High surface area porous carbons prepared from hydrochars by phosphoric acid activation, Bioresour. Technol., 102, 1947–1950 (2011).

    Article  Google Scholar 

  9. Z. Zhang, Y. Qu, Y. Guo, Z. Wang, and X. Wang, A novel route for preparation of high-performance porous carbons from hydrochars by KOH activation, Colloids Surfaces A, 447, 183–187 (2014).

    Article  Google Scholar 

  10. W. Yan, T. C. Acharjee, C. J. Coronella, and V. R. Vásquez, Thermal pretreatment of lignocellulosic biomass, Environ. Prog. Sustain. Energy, 28, 435–440 (2009).

    Article  Google Scholar 

  11. W. H. Chen, S. C. Ye, and H. K. Sheen, Hydrothermal carbonization of sugarcane bagasse via wet torrefaction in association with microwave heating, Bioresour. Technol., 118, 195–203 (2012).

    Article  Google Scholar 

  12. W. Yan, J. T. Hastings, T. C. Acharjee, C. J. Coronella, and V. R. Vá squez, Mass and energy balances of wet torrefaction of lignocellulosic biomass, Energy Fuels, 24, 4738–4742 (2010).

  13. T. Runge, P. Wipperfurth, and C. Zhang, Improving biomass combustion quality using a liquid hot water treatment, Biofuels, 4, 73–83 (2013).

    Article  Google Scholar 

  14. Q. V. Bach, K. Q. Tran, R. A. Khalil, Q. Skreiberg, and G. Seisenbaeva, Comparative assessment of wet torrefaction, Energy Fuels, 27, 6743–6753 (2013).

    Article  Google Scholar 

  15. W. Yang, T. Shimanouchi, M. Iwamura, Y. Takahashi, R. Mano, K. Takashima, et al., Elevating the fuel properties of Humulus lupulus, Plumeria alba and Calophyllum inophyllum L. through wet torrefaction, Fuel, 146, 88–94 (2015).

  16. Q. V. Bach, K. Q. Tran, R. A. Khalil, Q. Skreiberg, Wet torrefaction of forest residues, Energy Procedia, 61, 1196–1199 (2014).

    Article  Google Scholar 

  17. R. L. Isemin, A. V. Mikhalev, N. S. Muratova, V. S. Kogh-Tatarenko, Yu. S. Teplitskii, E. K. Buchilko, Z. Zh. Greben′kov, and E. A. Pitsukha, Improving the efficiency of biowaste torrefaction, Therm. Eng., 66, No. 7, 521–526 (2019).

  18. G. I. Zhuravskii, Thermolysis of polymeric composite materials, J. Eng. Phys. Thermophys., 92, No. 3, 603–607 (2019).

    Article  Google Scholar 

  19. B. M. Ghanim, D. Sh. Pandey, W. Kwapinski, and J. L. James, Hydrothermal carbonization of poultry litter: Effects of treatment temperature and residence time on yields and chemical properties of hydrochars, Biores. Technol., 236, 373–380 (2016).

    Article  Google Scholar 

  20. Y. Jiang, Q. Xie, Y. Zhang, C. Geng, B. Yu, and J. Chi, Preparation of magnetically separable activates carbon from brown coal with Fe3O4, Int. J. Mining Sci. Technol., 29, 513–519 (2019).

    Article  Google Scholar 

  21. R. S. Shevchenko, N. I. Bogdanovich, L. I. Kuznetsova, and G. V. Dobele, Formation of sorption and magnetic properties of ferromagnetic adsorbents during the pyrolysis of waste wood in the presence of iron (III) hydroxide, Izv. Vyssh. Uchebn. Zaved., Lesnoi Zh., Nos. 2–3, 142–150 (1999).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Muratova.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 94, No. 3, pp. 621–625, May–June, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muratova, N.S., Kuz’min, S.N., Milovanov, O.Y. et al. Production of Ferromagnetic Adsorbents from Solid Products of Biowaste Carbonization in a Fluidized Bed in a Medium of Superheated Water Vapor. J Eng Phys Thermophy 94, 602–605 (2021). https://doi.org/10.1007/s10891-021-02334-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-021-02334-5

Keywords

Navigation