Skip to main content
Log in

Enhanced Heat Transfer Effectiveness Using Low Concentration SiO2–TiO2 Core–Shell Nanofluid in a Water/Ethylene Glycol Mixture

  • NANOSTRUCTURES
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

This paper assesses the heat transfer performance of nanofluids containing a core–shell structure of SiO2 –TiO2 nanoparticles of low concentration in a mixture of water and ethylene glycol (EG) in a commercially available heat exchanger. For heat transfer analysis, 0–0.025% of SiO2 –TiO2 nanoparticles were employed in a finned-tube cross-flow heat exchanger (automobile radiator kit). The obtained results indicate that SiO2 –TiO2 particles have an amorphous structure and make it possible to increase the thermal conductivity as the nanoparticle fraction increases up to 0.04%. The nanofluid characteristics (Reynolds, Nusselt, and Prandtl numbers) increase, leading to an increase in the convection coefficient. As the thermal conductivity and the convection coefficient increase, the total heat transfer improves. Finally, the heat transfer effectiveness increases linearly by 21% with 0.025% mass fraction of SiO2 –TiO2 in a water/EG-based fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. M. Arsana, K. Budhikardjono, A. Susianto, and A. Altway, Modelling of the single staggered wire and tube heat exchanger, Int. J. Appl. Eng. Res., 11, No. 8, 5591–5599 (2016).

    Google Scholar 

  2. I. M. Arsana, K. Budhikardjono, A. Susianto, and A. Altway, Optimization of the single staggered wire and tube heat exchanger, MATEC Web Conf., 58, 01017 (2016).

    Article  Google Scholar 

  3. E. Ebrahimnia-Bajestan, M. C. Moghadam, H. Niazmand, W. Daungthongsuk, and S. Wongwises, Experimental and numerical investigation of nanofluids heat transfer characteristics for application in solar heat exchangers, Int. J. Heat Mass Transf., 92, 1041–1052 (2016).

    Article  Google Scholar 

  4. R. Davarnejad and M. Kheiri, Numerical comparison of turbulent heat transfer and flow characteristics of SiO2/water nanofluid within helically corrugated tubes and plain tube, Int. J. Eng., Trans. B Appl., 28, No. 10, 1408–1414 (2015).

  5. W. Duangthongsuk and S. Wongwises, Measurement of temperature-dependent thermal conductivity and viscosity of TiO2–water nanofluids, Exp. Therm. Fluid Sci., 33, 706–714 (2009).

    Article  Google Scholar 

  6. R. Barzegarian, M. K. Moraveji, and A. Aloueyan, Experimental investigation on heat transfer characteristics and pressure drop of BPHE (brazed plate heat exchanger) using TiO2–water nanofluid, Exp. Therm. Fluid Sci., 74, 11–18 (2016).

    Article  Google Scholar 

  7. W. H. Azmi, K. A. Hamid, R. Mamat, K. V. Sharma, and M. S. Mohamad, Effects of working temperature on thermo-physical properties and forced convection heat transfer of TiO2 nanofluids in water–ethylene glycol mixture, Appl. Therm. Eng., 106, 1190–1199 (2016).

    Article  Google Scholar 

  8. M. C. S. Reddy and V. V. Rao, Experimental studies on thermal conductivity of blends of ethylene glycol–water-based TiO2 nanofluid, Int. Commun. Heat Mass Transf., 46, 31–36 (2013).

    Article  Google Scholar 

  9. B. A. Bhanvase, M. R. Sarode, L. A. Putterwar, K. A. Abdullah, M. P. Deosarkar, and S. H. Sonawane, Intensification of convective heat transfer in water/ethylene glycol based nanofluids containing TiO2 nanoparticles, Chem. Eng. Process., 82, 123–131 (2014).

    Article  Google Scholar 

  10. K. A. Hamid, W. H. Azmi, R. Mamat, and K. V. Sharma, Experimental investigation on heat transfer performance of TiO2 nanofluids in water–ethylene glycol mixture, Int. Commun. Heat Mass Transf., 73, 16–24 (2016).

    Article  Google Scholar 

  11. R. Davarnejad and R. M. Ardehali, Modeling of TiO2–water nanofluid effect on heat transfer and pressure drop, Int. J. Eng., Trans. B Appl., 27, No. 2, 195–202 (2014).

  12. M. Pirhayati, M. A. Akhavan-Behabadi, and M. Khayat, Convective heat transfer of oil based nanofluid flow inside a circular tube, Int. J. Eng., Trans. B Appl., 27, No. 2, 341–348 (2014).

  13. M. Asefi, H. Molavi, M. Shariaty-Niassar, J. B. Darband, N. Nemati, M. Yavari, and M. Akbari, An investigation on stability, electrical and thermal characteristics of transformer insulting oil nanofluids, Int. J. Eng., Trans. B Appl., 29, No. 10, 1332–1340 (2016).

  14. M. Ebrahimi, M. Farhadi, K. Sedighi, and S. Akbarzade, Experimental investigation of force convection heat transfer in a car radiator filled with SiO2–water nanofluid, Int. J. Eng., Trans. B Appl., 27, No. 2, 333–340 (2014).

  15. K. A. Hamid, W. H. Azmi, M. F. Nabil, and R. Mamat, Experimental investigation of nanoparticle mixture ratios on TiO2–SiO2 nanofluids heat transfer performance under turbulent flow, Int. J. Heat Mass Transf., 118, 617–627 (2018).

    Article  Google Scholar 

  16. M. F. Nabil, W. H. Azmi, K. A. Hamid, and R. Mamat, Experimental investigation of heat transfer and friction factor of TiO2–SiO2 nanofluids in water:ethylene glycol mixture, Int. J. Heat Mass Transf., 124, 1361–1369 (2018).

    Article  Google Scholar 

  17. K. A. Hamid, W. H. Azmi, and R. M. K. V. Sharma, Heat transfer performance of TiO2–SiO2 nanofluids in a tube with wire coil inserts, Appl. Therm. Eng., 152, 275–286 (2019).

    Article  Google Scholar 

  18. J.-W. Lee, S. Kong, W.-S. Kim, and J. Kim, Preparation and characterization of SiO2/TiO2 core–shell particles with controlled shell thickness, Mater. Chem. Phys., 106, 39–44 (2007).

    Article  Google Scholar 

  19. M. C. S. Reddy and V. V. Rao, Experimental investigation of heat transfer coefficient and friction factor of ethylene glycol–water based TiO2 nanofluid in double pipe heat exchanger with and without helical coil inserts, Int. Commun. Heat Mass Transf., 50, 68–76 (2014).

    Article  Google Scholar 

  20. R. A. Wahyuono, Dye-Sensitized Solar Cells (DSSC) Fabrication with TiO2 and ZnO Nanoparticles for High Conversion Efficiency, Master Thesis-ITS, Surabaya, Indonesia (2013).

    Google Scholar 

  21. M. M. Rusu, R. A. Wahyuono, C. I. Fort, A. Dellith, J. Dellith, A. Ignaszak, A. Vulpoi, V. Danciu, B. Dietzek, and L. Baia, Impact of drying procedure on the morphology and structure of TiO2 xerogels and the performance of dyesensitized solar cells, J. Sol-Gel Sci. Technol., 81, No. 3, 693–703 (2017).

    Article  Google Scholar 

  22. W. H. Azmi, K. V. Sharma, P. K. Sarma, R. Mamat, and G. Najafi , Heat transfer and friction factor of water based TiO2 and SiO2 nanofluids under turbulent flow in a tube, Int. Commun. Heat Mass Transf., 59, 30–38 (2014).

    Article  Google Scholar 

  23. M. N. F. Mohamad, W. A. W. Hamzah, K. A. Hamid, and R. Mamat, Heat transfer performance of TiO2–SiO2 nanofluid in water–ethylene glycol mixture, J. Mech. Eng., 5, No. 1, 39–48 (2018).

    Google Scholar 

  24. S. K. Eiamsa-ard, K. Kiatkittipong, and W. Jedsadaratanachai, Heat transfer enhancement of TiO2/water nanofluid in a heat exchanger tube equipped with overlapped dual twisted-tapes, Int. J. Eng. Sci. Technol., 18, 336–350 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Arsana.

Additional information

Published in Inzhenerno-Fizicheskii Zhurnal, Vol. 94, No. 2, pp. 439–446, March–April, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arsana, I.M., Muhimmah, L.C., Nugroho, G. et al. Enhanced Heat Transfer Effectiveness Using Low Concentration SiO2–TiO2 Core–Shell Nanofluid in a Water/Ethylene Glycol Mixture. J Eng Phys Thermophy 94, 423–430 (2021). https://doi.org/10.1007/s10891-021-02312-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-021-02312-x

Keywords

Navigation