Skip to main content
Log in

Mathematical Model of Destruction of a Thermoporoelastic Medium

  • HEAT AND MASS TRANSFER IN DISPERSED AND POROUS MEDIA
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The work is devoted to the development of a mathematical model for describing the evolution of a thermoelastic medium with account for its destruction. The model is a modification of the Biot three-dimensional model with two continua: a porous deformable skeleton and a mobile single-phase fluid. The system of equations consists of fundamental mass, momentum, and energy conservation laws and is closed by thermodynamically coordinated determining relations. To derive the determining relations, use is made of the second law of thermodynamics that accounts for irreversible energy expenditures on the formation of a new surface of cracks. The form of the determining relations was obtained with the use of the Coleman–Noll procedure, which guarantees their thermodynamic coordination. The destruction of a medium is considered within the framework of the theory of continual destruction. To quantitatively estimate the degree of destruction, the damageability parameter is introduced, which is involved in all of the basic determining relations and, in particular, exerts its influence on the magnitude of elastic moduli. To determine the evolution of the damageability parameter, use is made of a kinetic equation. The applicability of the proposed model is shown with the example of calculation modeling heat carrier pumping into a thermoelastic medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Terzaghi, Die Berechnung der Durchlassigkeitsziffer des Tones aus dem Verlauf der hydrodynamischen Spannungserscheinungen, Sitz. Akad. Wissen., Wien Math. Naturwiss. Kl., Abt. IIa, 132, 105−124 (1923).

    Google Scholar 

  2. M. A. Biot, General theory of three dimensional consolidation, J. Appl. Phys., 12, 155−164 (1941).

    Article  MATH  Google Scholar 

  3. M. A. Biot, Theory of propagation of elastic waves in a fluid saturated porous solid. I. Low frequency range, J. Acoust. Soc. Am., 28, No. 2, 168−178 (1956).

    Article  MathSciNet  Google Scholar 

  4. M. A. Biot, Theory of propagation of elastic waves in a fluid saturated porous solid. II. Higher frequency range, J. Acoust. Soc. Am., 28, No. 2, 179−191 (1956).

    Article  MathSciNet  Google Scholar 

  5. M. A. Biot, The elastic coefficients of the theory of consolidation, J. Appl. Mech., Trans. ASME, 24, 594−601 (1957).

    MathSciNet  Google Scholar 

  6. M. A. Biot, Mechanics of deformation and acoustic propagation in porous media, J. Appl. Phys., 33, 1482−1498 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  7. J. R. Rice and M. P. Cleary, Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents, Rev. Geophys. Space Phys., 14, No. 2, 227−241 (1976).

    Article  Google Scholar 

  8. H. F. Wang, Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology, Princeton University Press, UK, 2000.

    Google Scholar 

  9. S. C. Cowin, Bone poroelasticity, J. Biomech., 32, Issue 3, 217−238 (1999).

    Article  Google Scholar 

  10. A. Malandrino and E. Moeendarbary, Poroelasticity of living tissues, Encyclopedia of Biomedical Engineering, Elsevier, Amsterdam, Netherlands (2017), pp. 238−245.

  11. R. W. Lewis and B. A. Schrefler, The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, 2nd edn., Wiley, 1998.

  12. R. de Boer, Highlights in the historical development of the porous media theory: Toward a consistent macroscopic theory, Appl. Mech., 46, No. 4, 201−262 (1996).

    Article  Google Scholar 

  13. K. Trusdell, Initial Course in Rational Continuum Mechanics [Russian translation], Nauka, Moscow (1975).

    Google Scholar 

  14. B. D. Coleman and W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity, Arch. Ration. Mech. Anal., 13, No. 1, 167−178 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  15. V. I. Kondaurov and V. E. Fortov, Principles of Thermomechanics of Condensed Medium [in Russian], MFTI, Moscow (2002).

    Google Scholar 

  16. V. I. Kondaurov, Mechanics and Thermodynamics of a Saturated Porous Medium [in Russian], MFTI, Moscow (2007).

    Google Scholar 

  17. O. Coussy, Poromechanics, John Wiley and Sons, Ltd. (2004).

    MATH  Google Scholar 

  18. L. W. Lake, Enhanced Oil Recovery, Prentice-Hall, New York (1989).

    Google Scholar 

  19. K. Aziz and A. Settari, Petroleum reservoir simulation, Appl. Sci. Publish., 476 (1979).

  20. Z. Chen, Reservoir Simulation: Mathematical Techniques in Oil Recovery, Soc. Ind. Appl. Mech. (2007).

  21. A. A. Griffith, The phenomena of rupture and flow in solids, Philos. Trans. Roy. Soc. London, Ser. A, 221, 163−198 (1921).

    Article  MATH  Google Scholar 

  22. M. M. Ramazanov, B. V. Kritskii, and E. B. Savenkov, Formulation of the J-integral for the Biot elastic porous medium module, J. Eng. Phys. Thermophys., 91, No. 6, 1595−1602 (2018).

    Article  Google Scholar 

  23. L. M. Kachanov, Principles of the Mechanics of Destruction [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  24. Yu. N. Rabotnov, Mechanism of long destruction, in: Problems of the Strength of Materials and Constructions [in Russian], AN SSSR, Moscow (1959), pp. 5−7.

    Google Scholar 

  25. J. Lemaitre, A continuous damage mechanics model for ductile fracture, J. Eng. Mater. Technol., 107, No. 1, 83−89 (1985).

    Article  Google Scholar 

  26. D. Krajcinovic and J. Lemaitre (Eds.), Continuum Damage Mechanics: Theory and Applications, Springer-Verlag, New York (1987), p. 294.

    MATH  Google Scholar 

  27. G. S. Goncharova and M. G. Khramchenkov, Mathematical model of hydralic fracturing of a bed, J. Eng. Phys. Thermophys., 89, No. 4, 848−853 (2016).

    Article  Google Scholar 

  28. S. Murakami and N. Ohno, A continuum theory of creep and creep damage, Creep in Structures, Springer, Berlin, Heidelberg (1981), pp. 422−444.

  29. W. Zhang and Y. Cai, Continuum Damage Mechanics and Numerical Applications, Springer Science and Business Media (2010).

  30. J. Pogacnik, M. O′Sullivan, and J. O′Sullivan, A damage mechanics approach to modeling permeability enhancement in thermo-hydro-mechanical simulations, Proc. 39th Geothermal Reservoir Engineering Workshop, 2014, pp. 24−26.

  31. F. A. Leckie and D. R. Hayhurst, Constitutive equations for creep rupture, Acta Metall., 25, 1059−1070 (1977).

    Article  Google Scholar 

  32. V. V. Silberschmidt and V. G. Silberschmidt, Stochastic dynamics of damage evolution in brittle rocks, Geologische Rundschau, 85, No. 1, 103−109 (1996).

    Article  Google Scholar 

  33. Z. Wang, Y. Li, and J. G. Wang, A method for evaluating dynamic tensile damage of rock, Eng. Fracture Mech., 75, No. 10, 2812−2825 (2008).

    Article  Google Scholar 

  34. V. V. Shevelev, Fracture criterion and durability of brittle materials under conditions of stationary heat and mass transfer, J. Eng. Phys. Thermophys., 83, No. 1, 52−59 (2010).

    Article  Google Scholar 

  35. A. S. Metertin and E. B. Savenkov, Mathematical Model of Fitrational Processes in a Thermoelastic Medium with Acount for Continual Destruction, Preprint No. 58 of the Institute of Applied Mathematics, Izd. Otdel IPM im. M. V. Keldysha, Moscow (2019).

  36. J. Lemaitre and R. Desmorat, Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures, Springer Science and Business Media (2005).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Meretin.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 94, No. 2, pp. 380–392, March–April, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meretin, A.S., Savenkov, E.B. Mathematical Model of Destruction of a Thermoporoelastic Medium. J Eng Phys Thermophy 94, 365–376 (2021). https://doi.org/10.1007/s10891-021-02306-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-021-02306-9

Keywords

Navigation