Skip to main content
Log in

Thermal Properties of Human Soft Tissue and Its Equivalents in a Wide Low-Temperature Range

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

A prescribed amount of heat to be removed from biotissues during cryogenic treatment is currently calculated with the use of simple prediction models. Therefore, a significant distinction exists between the calculated and actual doses during the operation. For reliable simulation, it is necessary to have accurate thermal properties of human tissues in a wide low-temperature range, but in the literature the data regarding these thermal properties are inconclusive. In the present paper, the thermal properties of human prostate, kidney, liver, and pancreatic tissues are analyzed. Using differential scanning calorimetry (DSC), the specific heat capacity in the temperature range from –160 to 40oС, the latent heat of melting, and the initial ice melting temperature are measured. The moisture content and cryoscopic temperature of these tissues are also investigated. Due to the difficulties with getting access to a human cardiac muscle and large specimens of other human biotissues, in the present study equivalents (porcine tissues) are used on the basis of their high similarity to human biotissues. In this case, only the thermal conductivity of a porcine cardiac muscle is determined. Based on the measurement results, the thermal properties of the same tissue type and of different types (including healthy tissues and tumors) are compared. The adaptation of experimental data for simulation software is proposed. The impact of the accuracy in determining the thermal properties on the thermal diffusivity is analyzed. The prospects in predicting the thermal properties of different biological tissues are considered. Based on the data obtained, it is possible to more accurately simulate heat transfer during cryoexposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Shakurov, A. V. Pushkarev, A. A. Zherdev, and D. I. Tsiganov, Target region temperature history approach for increasing accuracy of cryoexposure dose providing, Refrig. Sci. Technol., September, 3–7 (2018).

  2. S. Giwa, J. K. Lewis, L. Alvarez, et al., The promise of organ and tissue preservation to transform medicine, Nature Biotechnol., 35, No. 6, 530–542 (2017).

    Article  Google Scholar 

  3. K. F. Chu and D. E. Dupuy, Thermal ablation of tumours: Biological mechanisms and advances in therapy, Nature Rev. Cancer, 14, No. 3, 199–208 (2014).

    Article  Google Scholar 

  4. A. I. Zhmakin, Physical aspects of cryobiology, Physics-Uspekhi, 51, No. 3, 231–252 (2008).

    Article  Google Scholar 

  5. S. Kakaç, M. R. Avelino, and H. F. Smirnov (Eds.), Low Temperature and Cryogenic Refrigeration, Springer (2012), pp. 265–294.

  6. Z. Magalov, A. Shitzer, and D. Degani, An efficient technique for estimating the two-dimensional temperature distributions around multiple cryosurgical probes based on combining contributions of unit circles, Comput. Methods Biomech. Biomed. Eng., 19, No. 13, 1462–1474 (2016).

    Article  Google Scholar 

  7. R. Keelan, H. Z hang, K. Shimada, and Y. Rabin, Graphics processing unit-based bioheat simulation to facilitate rapid decision making associated with cryosurgery training, Technol. Cancer Res Treat., 15, No. 2, 377–386 (2015).

    Article  Google Scholar 

  8. A. V. Shakurov, A. V. Pushkarev, V. A. Pushkarev, and D. I. Tsiganov, Prerequisites for developing new generation cryosurgical devices, Sovrem. Tekhnol. Med., 9, No. 2, 178–187 (2017).

    Article  Google Scholar 

  9. M. Shurrab, H. Wang, N. Kubo, T. Fukunaga, K. Kurata, and H. Takamatsu, The cooling performance of a cryoprobe: Establishing guidelines for the safety margins in cryosurgery, Int. J. Refrigeration, 67, 308–318 (2016).

    Article  Google Scholar 

  10. G. Giorgi, L. Avalle, M. Brignone, M. Piana, and G. Caviglia, An optimisation approach to multiprobe cryosurgery planning, Comput. Methods Biomech. Biomed. Eng., 16, No. 8, 885–895 (2013).

    Article  Google Scholar 

  11. I. A. Burkov, A. V. Pushkarev, A. V. Shakurov, D. I. Tsiganov, and A. A. Zherdev, Numerical simulation of multiprobe cryoablation synergy using heat source boundary, Int. J. Heat Mass Transf., 147, No. 118946 (2020).

  12. A. Jaberzadeh and C. Essert, Pre-operative planning of multiple probes in three dimensions for liver cryosurgery: Comparison of different optimization methods, Math. Methods Appl. Sci., 39, No. 16, 4764–4772 (2016).

    Article  MathSciNet  Google Scholar 

  13. F. E. Boas, G. Srimathveeravalli, J. C. Durack, E. A. Kaye, J. P. Erinjeri, E. Ziv, M. Maybody, H. Yarmohammadi, and S. B. Solomon, Development of a searchable database of cryoablation simulations for use in treatment planning, CardioVasc. Interv. Radiol., 40, No. 5, 761–768 (2017).

    Article  Google Scholar 

  14. D. Tarwidi, Go dunov method for multiprobe cryosurgery simulation with complex-shaped tumors, in: AIP Conf. Proc., 1707, No. 060002 (2016).

  15. L. A. Dombrov sky, N. B. Nenarokomova, D. I. Tsiganov, and Y. A. Zeigarnik, Modeling of repeating freezing of biological tissues and analysis of possible microwave monitoring of local regions of thawing, Int. J. Heat Mass Transf., 89, 894–902 (2015).

    Article  Google Scholar 

  16. Y. Rabin, The effect of temperature-dependent thermal conductivity in heat transfer simulations of frozen biomaterials, CryoLett., 21, 163–170 (2000).

    Google Scholar 

  17. B. Han and J. C. Bischof, Effect of thermal properties on heat transfer in cryopreservation and cryosurgery, in: Advances in Heat and Mass Transfer in Biotechnology, American Society of Mechanical Engineers (2002), pp. 7–15.

  18. J. Y. Chan and E. H. Ooi, Sensitivity of thermophysiological models of cryoablation to the thermal and biophysical properties of tissues, Cryobiology, 73, No. 3, 304–315 (2016).

  19. P. A. Hasgall, E. Neufeld, M. C. Gosselin, A. Klingenböck, and N. Kuster, IT´IS Database for Thermal and Electromagnetic Parameters of Biological Tissues, Version 4.0, March 1st, 2019.

  20. J. Choi and J. C. Bischof, Review of biomaterial thermal property measurements in the cryogenic regime and their use for prediction of equilibrium and non-equilibrium freezing applications in cryobiology, Cryobiology, 60, No. 1, 52–70 (2010).

  21. F. A. Duck, Physical Properties of Tissue: A Comprehensive Reference Book, IPEM (2012).

  22. A. Bhowmik, R. Singh, R. Repaka, and S. C. Mishrab, Conventional and newly developed bioheat transport models in vascularized tissues, J. Therm. Biology, 38, 107–125 (2013).

    Article  Google Scholar 

  23. L. E. Ehrlich, G. M. Fahy, B. G. Wowk, J. A. Malen, and Y. Rabin, Thermal analyses of a human kidney and a rabbit kidney during cryopreservation by vitrification, J. Biomech. Eng., 140, No. 1 (2018).

  24. J. D. Werner, A. C. Tregnago, G. J. Netto, C. Frangakis, and C. S. Georgiades, Single 15-min protocol yields the same cryoablation size and margin as the conventional 10–8–10-min protocol: Results of kidney and liver swine experiment, CardioVasc. Intervent. Radiol., 41, No. 7, 1089–1094 (2018).

    Article  Google Scholar 

  25. P. Joshi, A. Sehrawat, and Y. Rabin, Computerized planning of prostate cryosurgery and shape considerations, Technol. Cancer Res. Treat., 16, No. 6, 1272–1283 (2017).

    Article  Google Scholar 

  26. M. D. Khanevi ch, G. M. Manikhas, K. V. Fedosenko, R. V. Fadeev, M. S. Dinikin, and S. A. Yusifov, The effect of local cryogenic treatment on the morpho-functional state of the pancreas, J. Int. Acad. Refrig., No. 2, 73–75 (2013).

    Google Scholar 

  27. M. Shahedi, D. W. Cool, G. S. Bauman, M. Bastian-Jordan, A. Fenster, and A. D. Ward, Accuracy validation of an automated method for prostate segmentation in magnetic resonance imaging, J. Digital Imaging, 30, No. 6, 782795 (2017).

  28. D. E. Ponomare v and A. V. Pushkarev, Research of human kidney thermal properties for the purpose of cryosurgery, J. Phys.: Conf. Ser., 891, No. 1, No. 012336 (2017).

  29. A. G. Belozero v, Y. M. Berezovsky, A. A. Zherdev, I. A. Korolev, A. V. Pushkarev, I. V. Agafonkina, and D. I. Tsiganov, A study of the thermophysical properties of human prostate tumor tissues in the temperature range from –160 to +40oC, Biofizika, 63, No. 2, 268–273 (2018).

    Google Scholar 

  30. A. G. Belozero v, U. M. Berezovsky, and I. A. Korolev, Approach to optimizing parameters of differential scanning calorimeter temperature programs to ensure the stability of research mode at subzero temperatures, Int. Res. J., No. 12 (54), Part 1, 120–124 (2016).

  31. L. P. Correia, E. A. de Moura, H. M. Pires, and R. O. Macêdo, Different salinities water characterization by DSCcooling, J. Therm. Anal. Calorim., 106, No. 2, 459–461 (2011).

    Article  Google Scholar 

  32. ASTM E1269-11, ASTM International, West Conshohocken, PA (2011).

  33. ASTM E793-06, ASTM International, West Conshohocken, PA (2012).

  34. G. W. H. Höhne, G. F. Hemminger, and H. J. Flammenheim, Differential Scanning Calorimetry, Springer (2003).

  35. C. Kim, A. P. O’ Rourke, D. M. Mahvi, and J. G. Webster, Finite-element analysis of ex vivo and in vivo hepatic cryoablation, Biomed. Eng. IEEE Trans., 54, No. 7, 1177–1185 (2007).

  36. A. O. Vasilyev , A. V. Govorov, A. V. Pushkarev, D. I. Tsiganov, and A. V. Shakurov, Thermophysical modeling of cryosurgry with the case study of prostate cancer, Tekhnol. Zhivykh Sistem, 11, No. 4, 47–53 (2014).

    Google Scholar 

  37. A. J. Welch an d M. J. C. van Gemert (Eds.), Optical-Thermal Response of Laser-Irradiated Tissue, Springer (2011).

  38. T. E. Cooper and G. J. Trezek, Correlation of thermal properties of some human tissues with water content, Aerosp. Med., 42, 24–27 (1971).

  39. K. R. Holmes , W. Ryan, and M. M. Chen, Thermal conductivity and H2O content in rabbit kidney cortex and medulla, J. Therm. Biol., 8, No. 4, 311–313 (1983).

    Article  Google Scholar 

  40. A. A. Gavdush, N. V. Chernomyrdin, K. M. Malakhov, et al., Terahertz spectroscopy of gelatin-embedded human brain gliomas of different grades: A road toward intraoperative THz diagnosis, J. Biomed. Opt., 24, No. 2, 1–5 (2019).

    Article  Google Scholar 

  41. J. Choi, M. Mo rrissey, and J. C. Bischof, Thermal processing of biological tissue at high temperatures: Impact of protein denaturation and water loss on the thermal properties of human and porcine liver in the range 25–80oC, J. Heat Transf., 135, No. 6 [061302] (2013).

  42. S. I. Lazarev, Y. M Golovin, S. V. Kovalev, and A. A. Levin, Characteristics of thermal action on porous cellulose acetate composite material, J. Eng. Phys. Thermophys., 92, 1050–1054 (2019).

    Article  Google Scholar 

  43. ASHRAE Handbook. Refrigeration, SI Edition (2014).

  44. D. Eisenberg and W. Kauzmann, The Structure and Properties of Water, Oxford University Press, Oxford (1969).

    Google Scholar 

  45. A. K. Fleming, Calorimetric properties of lamb and other meats, J. Food Technol., 4, 199–215 (1969).

    Article  Google Scholar 

  46. L. Riedel, Kalorimetrische Untersuchungen über das Gefrieren von Fleisch, Kältetechnik, 9, No. 2, 38–40 (1957).

  47. L. Riedel, Zum Problem des gebundenen Wassers in Fleisch, Kältetechnik, 13, No. 3, 122–128 (1961).

  48. A. O. Zhdanova, S. S. Kralinova, G. V. Kuznetsov, and P. A. Strizhak, Thermophysical and thermokinetic characteristics of forest combustible materials, J. Eng. Phys. Thermophys., 92, 1355–1363 (2019).

    Article  Google Scholar 

  49. Yu. M. Berezovsky, I. A. Korolev, I. V. Agafonkina, and T. A. Sarantsev, Study of the influence of beef humidity on the number of related moisture by calorimetric method, Proc. Voronezh State Univ. Eng. Technol., 80, No. 4, 25–29 (2018).

    Article  Google Scholar 

  50. A. G. Belozerov, Yu. M. Berezovsky, I. A. Korolev, and I. V. Agafonkina, Research of thermophysical properties of chicken meat, Poultry Poultry Products, 1, 18–21 (2017).

    Google Scholar 

  51. Yu. M. Berezovsky, I. A. Korolev, I. V. Agafonkina, and T. A. Sarantsev, A study of thermophysical properties of NOR and DFD beef, Innovatsionnye Technol. Proizv. Khraneniya Mater. Tsennostei Gos. Nuzhd, 9, No. 9, 46–54 (2018).

    Google Scholar 

  52. D. I. Tsiganov, Cryomedicine: Processes and Apparatus, Sayns Press, Moscow (2011).

    Google Scholar 

  53. D. J. Cleland, Prediction of food thermal properties to enable accurate design of food refrigeration processes, in: Proc. 25th IIR Int. Congress of Refrigeration, 24–30 August, 2019, Montreal, Canada (2019), pp. 1–13.

  54. V. A. Mikhailik, N. V. Dmitrenko, and Yu. F. Snezhkin, Investigation of the infl uence of hydration on the heat of evaporation of water from sucrose solutions, J. Eng. Phys. Thermophys., 92, 916–922 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shakurov.

Additional information

Published in Inzhenerno-Fizicheskii Zhurnal, Vol. 94, No. 1, pp. 240–254, January–February, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agafonkina, I.V., Belozerov, A.G., Vasilyev, A.O. et al. Thermal Properties of Human Soft Tissue and Its Equivalents in a Wide Low-Temperature Range. J Eng Phys Thermophy 94, 233–246 (2021). https://doi.org/10.1007/s10891-021-02292-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-021-02292-y

Keywords

Navigation