Skip to main content
Log in

Numerical Simulation of the High-Temperature Oxidation of a Nanosize Aluminum Particle

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

A mathematical model of high-temperature oxidation of a nanosize aluminum particle has been presented. The model takes account of the diffusion of the oxidant and the aluminum vapor through a spherical layer of alumina around the aluminum melt, and also of the dependence of the rate of the reaction between the oxygen and the aluminum on temperature. Calculations of the time of burning of a nanosize aluminum particle of diameter 80 mm as a function of the temperature and pressure of the surrounding gas and of the oxygen concentration turned out to be in agreement with the results of experimental measurements presented in scientifi c literature. The exponents in the dependence of the burning time of a nanosize aluminum particle on the particle diameter and the temperature and pressure of the ambient medium have been determined; it has been shown that the exponents are dependent on temperature, pressure, and particle diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. I. Lukhovitskii and A. S. Sharipov, Thermodynamic analysis of prospects for using aluminum- and boron-containing clusters in combined high-energy fuels, J. Eng. Phys. Thermophys., 91, No. 3, 766–773 (2018).

    Article  Google Scholar 

  2. A. F. Belyaev, Yu. V. Frolov, and A. I. Korotkov, On combustion and ignition of fi nely divided aluminum particles, Fiz. Goreniya Vzryva, 4, No. 3, 323–329 (1968).

    Google Scholar 

  3. M. V. Beckstead, Analysis of the data on combustion time of aluminum particles, Fiz. Goreniya Vzryva, 41, No. 5, 55–69 (2005).

    Google Scholar 

  4. D. Sundaram, V. Yang, and V. E. Zarko, Combustion of aluminum nanoparticles (a review), Fiz. Goreniya Vzryva, 51, No. 2, 37–63 (2015).

    Google Scholar 

  5. K. Park, D. Lee, A. Rai, D. Mukherjee, and M. R. Zachariah, Size-resolved kinetic measurements of aluminum nanoparticle oxidation with single particle mass spectrometry, J. Phys. Chem. B, 109, No. 15, 7290–7299 (2005).

    Article  Google Scholar 

  6. T. Bazyn, H. Krier, and N. Glumac, Evidence for the transition from the diffusion-limit in aluminum particle combustion, Proc. Combust. Inst., 31, No. 2, 2021–2028 (2007).

    Article  Google Scholar 

  7. T. Bazyn, H. Krier, and N. Glumac, Combustion of nanoaluminum at elevated pressure and temperature behind reflected shock waves, Combust. Flame, 145, 703–713 (2006).

    Article  Google Scholar 

  8. A. Ermoline, D. Yildiz, E. L. Dreizin, Model of heterogeneous combustion of small particles, Combust. Flame, 160, 2982−2989 (2013).

    Article  Google Scholar 

  9. J. Buckmaster and T. L. Jackson, Modeling the combustion of a sub-micron aluminum particle, Combust. Theory Model., 18, No. 2, 242–260 (2014).

    Article  MathSciNet  Google Scholar 

  10. V. V. Levdanskii, J. Smolik, and P. Moravec, Chemical reactions in nanoparticles, J. Eng. Phys. Thermophys., 83, No. 2, 401–405 (2010).

    Article  Google Scholar 

  11. V. V. Levdanskii, J. Smolik, V. Zdimal, and P. Moravec, Influence of size effects on chemical reactions inside a nanoparticle and on its surface, J. Eng. Phys. Thermophys., 86, No. 4, 863–867 (2013).

    Article  Google Scholar 

  12. A. Yu. Krainov and V. A. Poryazov, Mathematical model and calculation of the rate of combustion of a frozen aqueous suspension of a nanodisperse aluminum, J. Eng. Phys. Thermophys., 92, No. 5, 1338–1348 (2019).

    Article  Google Scholar 

  13. A. Yu. Krainov, V. A. Poryazov, and K. M. Moiseeva, Velocity of propagation of the fl ame in an aerosuspension of nanosize aluminum powder, Vestn. Tomsk. Gos. Univ., Mat. Mekh., No. 53, 95–106 (2018).

    Google Scholar 

  14. A. Y. Krainov, V. A. Poryazov, K. M. Moiseeva, and D. A. Krainov, Mathematical combustion model of nanoaluminum–air suspension, Combust. Theory Model., 24, 1–17 (2019).

    MathSciNet  Google Scholar 

  15. T. L. Pourpoint, T. D. Wood, M. A. Pfeil, J. Tsohas, and S. F. Son, Feasibility study and demonstration of an aluminum and ice solid propellant, Int. J. Aerospace Eng., Article ID 874076 (2012); DOI: https://doi.org/10.1155/2012/874076.

  16. M. A. Trunov, M. Schoenitz, and E. L. Dreizin, Effect of polymorphic phase transformations in alumina layer on ignition of aluminum particles, Combust. Theory Model., 10, No. 4, 603–623 (2006).

    Article  Google Scholar 

  17. Chengdong Kong, Dan Yu, Shuiqing Li, and Qiang Yao, Mechanism and modeling of aluminum nanoparticle oxidation coupled with crystallization of amorphous Al2O3 shell, Combust. Theory Model., 20, No. 2, 296–312 (2016).

    Article  Google Scholar 

  18. A. Rai, K. Park, L. Zhou, and M. R. Zachariah, Understanding the mechanism of aluminum nanoparticle oxidation, Combust. Theory Model., 10, No. 5, 843–859 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Moiseeva.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 94, No. 1, pp. 84–92, January–February, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krainov, A.Y., Poryazov, V.A., Moiseeva, K.M. et al. Numerical Simulation of the High-Temperature Oxidation of a Nanosize Aluminum Particle. J Eng Phys Thermophy 94, 79–87 (2021). https://doi.org/10.1007/s10891-021-02275-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-021-02275-z

Keywords

Navigation